Assistant Professor
助理教授
基本信息
- 批准号:RGPIN-2020-06962
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the introduction of ultra-fast 5G networks, companies and organizational infrastructures are facing an ever-increasing number of endpoint devices such as PCs, mobile devices, Internet-of-Thing (IoT) sensors, and actuators. They significantly enlarge the attack surface, and the cyber-attacks have been vastly shifting from perimeter to endpoint devices. Malware infection and fileless vulnerability exploits are two major rapidly evolving threats against endpoints, causing significant financial loss to companies and organizations. Deep Learning (DL) has been driving the next-generation malware detection and vulnerability discovery solutions for optimized endpoint security in both industry and academia, due to its simplicity for integration, low overhead, and effectiveness against future unknown attacks. However, these DL-powered solutions as black-box approaches cannot provide the same degree of insight and actionable information as legacy signature-based solutions to security analysts and officers. The proposed research addresses the critical and urgent issues of effectiveness, interpretability, and actionability of the black-box DL solutions against emerging malware and vulnerability exploits on endpoint devices. The research studies the underlying generic representation of malware and vulnerability in a software ecosystem and their relationship to build an effective DL system defending against and gaining insight from the incoming attacks. This research will be fundamental to promote Canadian cyber capability to detect, defend, and act on emerging large-scale cyber-attacks targeting both the public and private sectors. It also augments endpoint security for the general public by building a safer cyber world. The Canadian cybersecurity landscape is at risk, and Canada currently trains less than half of the skilled professionals needed in cybersecurity-related industrials. The proposed research will address this large professional shortage in Canada for both the public and private sectors. Training of HQP in this program will include demanding skills in binary analysis, vulnerability analysis, reverse engineering, large-scale data analysis, and explainable machine learning. I expect that three PhD students, six MSc students, and five undergraduate students will receive training through this program that will prepare them to launch careers in academia, industry or government agencies.
随着超高速5G网络的引入,公司和组织基础设施面临着越来越多的端点设备,如PC、移动的设备、物联网(IoT)传感器和执行器。它们显著扩大了攻击面,网络攻击已经从外围设备大幅转移到终端设备。恶意软件感染和无文件漏洞利用是针对端点的两个主要快速发展的威胁,给公司和组织造成重大经济损失。深度学习(DL)一直在推动下一代恶意软件检测和漏洞发现解决方案,以优化工业界和学术界的端点安全性,因为它易于集成,开销低,并且可以有效抵御未来的未知攻击。但是,这些基于DL的解决方案作为黑盒方法,无法向安全分析师和安全管理人员提供与传统的基于签名的解决方案相同程度的洞察力和可操作信息。 拟议的研究解决了黑盒DL解决方案的有效性,可解释性和可操作性的关键和紧迫问题,以应对端点设备上出现的恶意软件和漏洞利用。该研究研究了软件生态系统中恶意软件和漏洞的基本通用表示及其关系,以建立一个有效的DL系统来防御和了解传入的攻击。这项研究将是至关重要的,以促进加拿大的网络能力,以检测,防御和对新兴的大规模网络攻击,针对公共和私营部门采取行动。它还通过建立一个更安全的网络世界来增强公众的端点安全。加拿大的网络安全前景面临风险,加拿大目前培训的网络安全相关行业所需的熟练专业人员不到一半。拟议的研究将解决加拿大公共和私营部门专业人员严重短缺的问题。HQP在该计划中的培训将包括二进制分析,漏洞分析,逆向工程,大规模数据分析和可解释机器学习方面的高要求技能。我预计,三名博士生,六名硕士生和五名本科生将通过该计划接受培训,这将使他们准备在学术界,工业界或政府机构开展职业生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ding, StevenHonghui其他文献
Ding, StevenHonghui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ding, StevenHonghui', 18)}}的其他基金
Assistant Professor
助理教授
- 批准号:
RGPIN-2020-06962 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Assistant Professor
助理教授
- 批准号:
RGPIN-2020-06962 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Assistant Professor
助理教授
- 批准号:
RGPIN-2020-06962 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Assistant Professor
助理教授
- 批准号:
RGPIN-2020-06962 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Assistant Professor
助理教授
- 批准号:
RGPIN-2015-06127 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Assistant Professor
助理教授
- 批准号:
RGPIN-2015-03936 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Assistant Professor
助理教授
- 批准号:
RGPIN-2015-03936 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Assistant Professor
助理教授
- 批准号:
RGPIN-2015-06127 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Assistant Professor
助理教授
- 批准号:
RGPIN-2015-03936 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Assistant Professor
助理教授
- 批准号:
RGPIN-2015-06127 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Assistant Professor
助理教授
- 批准号:
RGPIN-2015-03936 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual