Photovoltaic-Enabled Aesthetic Cladding for Smart Buildings

智能建筑的光伏美观包层

基本信息

  • 批准号:
    562500-2021
  • 负责人:
  • 金额:
    $ 3.64万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

In order to meet the energy demand of urban areas with high population densities, greener solutions that efficiently use the available resources are needed. The vertical walls of tall buildings have vast surface areas that can potentially become significant energy harvesting platforms. While the vertical walls are somewhat less optimal for solar panel implementation than roof-tops, they offer a lot larger surface area. At the same time, unlike the roof-tops, the vertical walls must have a pleasing appearance with higher aesthetic standards because of their visibility. The primary goal of this research partnership between the University of Waterloo and GCAT Inc., a major building cladding manufacturer, is to develop aesthetically inspired photovoltaic (PV)-enabled building cladding for smart buildings. The research will develop scalable processes for the embedment of high performance solar cells in building claddings with control over the aesthetics of the final product while also maximizing the PV output. Exploiting various physical phenomena of thin films and nanostructures, techniques will be developed to modify glass sheets used in standard solar panels, enhance optical thin films, and incorporate nanoscale plasmonic structures, while also maintaining maximum possible transparency. The color and texture perceived by the viewer will be a key aesthetic parameter that needs to be controlled in these building-integrated PV devices. Realization of certain colours, especially lighter ones where a broader wavelength range of photons get reflected, will inevitably come with some penalty on the energy output of the PV panel. A key aspect of this project is the development of processes that lead to an optimized photovoltaic-architectural performance. Prototypes of PV-incorporated cladding will be demonstrated following the different techniques and evaluated for architectural compatibility. This research, coupled with the rapidly declining PV prices seen in recent times, will contribute strongly to reduce the carbon footprint particularly in urban areas, and opens up commercially viable opportunities for the building industry.
为了满足人口密度高的城市地区的能源需求,需要有效利用现有资源的更环保的解决方案。高层建筑的垂直墙壁有巨大的表面积,可以成为重要的能量收集平台。虽然垂直墙不像屋顶那样适合安装太阳能电池板,但它们的表面积要大得多。与此同时,与屋顶不同,垂直墙必须具有令人愉悦的外观,因为它们的可见性具有更高的审美标准。滑铁卢大学和主要建筑覆层制造商GCAT公司之间的这项研究合作的主要目标是为智能建筑开发美观的光伏(PV)建筑覆层。该研究将开发可扩展的工艺,用于在建筑覆层中嵌入高性能太阳能电池,控制最终产品的美学,同时最大限度地提高光伏输出。利用薄膜和纳米结构的各种物理现象,将开发技术来修改用于标准太阳能电池板的玻璃片,增强光学薄膜,并纳入纳米级等离子体结构,同时保持最大可能的透明度。观看者感知到的颜色和纹理将是这些建筑集成光伏设备需要控制的关键美学参数。实现某些颜色,特别是反射波长范围更广的光子的较浅的颜色,将不可避免地对光伏板的能量输出造成一些损失。该项目的一个关键方面是开发优化光伏建筑性能的工艺。将按照不同的技术展示结合了pv的覆层原型,并评估其建筑兼容性。这项研究,加上近年来光伏价格的迅速下降,将有力地减少碳足迹,特别是在城市地区,并为建筑行业开辟了商业上可行的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SIVOTHTHAMAN, SIVAS其他文献

SIVOTHTHAMAN, SIVAS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
  • 批准号:
    10096988
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    EU-Funded
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
  • 批准号:
    10110118
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    EU-Funded
Low Carbon Impact AI-Enabled Net Zero Advisory Solution
低碳影响人工智能支持的净零咨询解决方案
  • 批准号:
    10112272
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    SME Support
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
  • 批准号:
    10091423
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Collaborative R&D
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
  • 批准号:
    EP/X040828/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Research Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324714
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了