Scalable Federated Learning and Analytics with Communication Efficiency in Mobile Cloud Computing
移动云计算中具有通信效率的可扩展联合学习和分析
基本信息
- 批准号:RGPIN-2022-04782
- 负责人:
- 金额:$ 5.54万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Today, mobile cloud computing becomes the norm and machine learning (ML) becomes a necessity. Millions of devices at the network edge, from smartphones to Internet of Things (IoT) sensors, need to collaborate autonomously to perform complex tasks with the assistance of the cloud. These complex tasks, such as object detection and question-answering, may involve both ML training and analytics at the edge devices. This research focuses on the design of scalable, personalized, and communication-efficient mechanisms for next-generation federated learning and analytics with large numbers of edge devices. Although both federated learning and federated analytics have drawn much recent attention, they remain at a nascent stage of research, especially as the number of edge devices scales up in mobile cloud computing systems. The majority of existing studies have focused on traditional client-server architectures, which is far from scalable. As the number of devices scales up and the network traffic load increases, devices become more heterogeneous in their capabilities and data distribution, and communication efficiency is far more difficult to achieve. Further exacerbating this challenge, as a shared global model is trained and then deployed for inference, existing work failed to consider the need for personalization on individual devices, customized for its locally collected dataset and tailored to its own requirements. The long-term goal of this research program is to improve the scalability of both federated learning and analytics, by substantially improving both communication efficiency and the effectiveness of training personalized models and using them for local analytics. Towards such a long-term goal, this research proposes to achieve a number of specific objectives. First, we aim to achieve a balanced trade-off between model performance, privacy preservation, and communication efficiency, and design new local differential privacy, model quantization and aggregation mechanisms. Second, we will investigate the design of new algorithms for fine-tuning meta-learning models for personalized for individual needs on each edge device. Third, we will study how inference workload with large and complex models in federated analytics can be best distributed across multiple edge devices to satisfy their power and capability constraints. Finally, to demonstrate real-world feasibility of this proposed research, we will build a production-quality open-source framework that encompasses our proposed solutions in this research program, so that they can be tested in a real-world production environment. The program will train highly qualified personnel (HQP) in the intersection of deep learning theory and distributed computing systems, offering a mix of theoretical and hands-on skill sets that are in high demand today. A strong emphasis on equity, diversity, and inclusion (EDI) will be consistently carried out during the program.
如今,移动云计算成为规范和机器学习(ML)成为必要的。从智能手机到物联网(IoT)传感器的网络边缘设备数百万个设备需要自动协作以在云的帮助下执行复杂的任务。这些复杂的任务,例如对象检测和提问,可能涉及边缘设备的ML培训和分析。这项研究着重于针对下一代联合学习和具有大量边缘设备的下一代联合学习和分析的可扩展,个性化和沟通效率的机制的设计。尽管联合学习和联合分析都引起了最近的关注,但它们仍处于研究的新兴阶段,尤其是随着移动云计算系统中边缘设备的数量扩展。现有的大多数研究都集中在传统的客户服务器架构上,这远非可扩展。随着设备的扩展和网络流量负载的增加,设备的功能和数据分配变得越来越多,并且通信效率更加难以实现。进一步加剧了这一挑战,随着共享的全球模型经过培训,然后进行了推断,现有工作未能考虑在单个设备上进行个性化的需求,这是针对其本地收集的数据集定制的,并根据其自身的要求进行了量身定制。该研究计划的长期目标是通过实质上提高沟通效率和培训个性化模型的有效性并将其用于本地分析,以提高联合学习和分析的可扩展性。达到这样一个长期目标,这项研究提出了实现许多特定目标。首先,我们旨在在模型性能,隐私保护和沟通效率和设计新的当地差异隐私,模型量化和聚合机制之间实现平衡的权衡。其次,我们将研究针对每个边缘设备上个性化的个性化的微调元学习模型的新算法的设计。第三,我们将研究如何最好地分布在联合分析中的大型和复杂模型的推理工作量如何在多个边缘设备上分布,以满足其功率和能力约束。最后,为了证明这项拟议研究的现实世界可行性,我们将建立一个生产质量的开源框架,该框架涵盖了我们在该研究计划中提出的解决方案,以便可以在现实世界中的生产环境中进行测试。该计划将在深度学习理论和分布式计算系统的交集中培训高素质的人员(HQP),并提供当今需求量很高的理论和动手技能集合。在计划期间,将始终如一地强调公平,多样性和包容性(EDI)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li, Baochun其他文献
On achieving maximum multicast-throughput in undirected networks
- DOI:
10.1109/tit.2006.874515 - 发表时间:
2006-06-01 - 期刊:
- 影响因子:2.5
- 作者:
Li, Zongpeng;Li, Baochun;Lau, Lap Chi - 通讯作者:
Lau, Lap Chi
Halophyte Halogeton glomeratus, a promising candidate for phytoremediation of heavy metal-contaminated saline soils
- DOI:
10.1007/s11104-019-04152-4 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:4.9
- 作者:
Li, Baochun;Wang, Juncheng;Wang, Huajun - 通讯作者:
Wang, Huajun
Collaborative Caching in Wireless Video Streaming Through Resource Auctions
通过资源拍卖在无线视频流中进行协作缓存
- DOI:
10.1109/jsac.2012.120226 - 发表时间:
2012-01 - 期刊:
- 影响因子:16.4
- 作者:
Dai, Jie;Liu, Fangming;Li, Bo;Li, Baochun;Liu, Jiangchuan - 通讯作者:
Liu, Jiangchuan
Wide Area Analytics for Geographically Distributed Datacenters
- DOI:
10.1109/tst.2016.7442496 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:6.6
- 作者:
Ji, Siqi;Li, Baochun - 通讯作者:
Li, Baochun
Peer-Assisted On-Demand Streaming: Characterizing Demands and Optimizing Supplies
同行辅助点播流媒体:描述需求并优化供应
- DOI:
10.1109/tc.2011.222 - 发表时间:
2013-02 - 期刊:
- 影响因子:3.7
- 作者:
Liu, Fangming;Li, Bo;Li, Baochun;Jin, Hai - 通讯作者:
Jin, Hai
Li, Baochun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li, Baochun', 18)}}的其他基金
Managing Resources across Geo-Distributed Datacenters for Big Data Analytics and Mobile Cloud Applications
跨地理分布式数据中心管理资源以进行大数据分析和移动云应用程序
- 批准号:
RGPIN-2016-06281 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Managing Resources across Geo-Distributed Datacenters for Big Data Analytics and Mobile Cloud Applications
跨地理分布式数据中心管理资源以进行大数据分析和移动云应用程序
- 批准号:
RGPIN-2016-06281 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Managing Resources across Geo-Distributed Datacenters for Big Data Analytics and Mobile Cloud Applications
跨地理分布式数据中心管理资源以进行大数据分析和移动云应用程序
- 批准号:
RGPIN-2016-06281 - 财政年份:2019
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Managing Resources across Geo-Distributed Datacenters for Big Data Analytics and Mobile Cloud Applications
跨地理分布式数据中心管理资源以进行大数据分析和移动云应用程序
- 批准号:
RGPIN-2016-06281 - 财政年份:2018
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Managing Resources across Geo-Distributed Datacenters for Big Data Analytics and Mobile Cloud Applications
跨地理分布式数据中心管理资源以进行大数据分析和移动云应用程序
- 批准号:
RGPIN-2016-06281 - 财政年份:2017
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Performance optimization for multi-datacenter cloud platforms
多数据中心云平台性能优化
- 批准号:
499448-2016 - 财政年份:2016
- 资助金额:
$ 5.54万 - 项目类别:
Collaborative Research and Development Grants
Managing Resources across Geo-Distributed Datacenters for Big Data Analytics and Mobile Cloud Applications
跨地理分布式数据中心管理资源以进行大数据分析和移动云应用程序
- 批准号:
RGPIN-2016-06281 - 财政年份:2016
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Thrift: optimizing performance in complex mobile internet applications with network coding
Thrift:通过网络编码优化复杂移动互联网应用程序的性能
- 批准号:
238994-2011 - 财政年份:2015
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
A cloud-assisted crowdsourcing machine-to-machine networking platform for vehicular applications
用于车辆应用的云辅助众包机器对机器网络平台
- 批准号:
447493-2013 - 财政年份:2015
- 资助金额:
$ 5.54万 - 项目类别:
Strategic Projects - Group
Thrift: optimizing performance in complex mobile internet applications with network coding
Thrift:通过网络编码优化复杂移动互联网应用程序的性能
- 批准号:
238994-2011 - 财政年份:2014
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
面向联邦学习的调度与通信优化关键技术研究
- 批准号:62372305
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于联邦学习和区块链的物联网安全可信数据共享理论与技术研究
- 批准号:62366004
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
面向高效鲁棒联邦学习的移动端效用分析技术研究
- 批准号:62302267
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于区块链和联邦学习的能源交易数据隐私共享与融合研究
- 批准号:62303296
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针对异质性的图联邦学习方法研究
- 批准号:62302537
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 5.54万 - 项目类别:
Standard Grant
CICI: TCR: Transitioning Differentially Private Federated Learning to Enable Collaborative, Intelligent, Fair Skin Disease Diagnostics on Medical Imaging Cyberinfrastructure
CICI:TCR:转变差异化私有联合学习,以实现医学影像网络基础设施上的协作、智能、公平的皮肤病诊断
- 批准号:
2319742 - 财政年份:2024
- 资助金额:
$ 5.54万 - 项目类别:
Standard Grant
Efficient Federated Learning for Deep Learning Through Structured Training
通过结构化训练实现深度学习的高效联邦学习
- 批准号:
24K20845 - 财政年份:2024
- 资助金额:
$ 5.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
- 批准号:
24K20848 - 财政年份:2024
- 资助金额:
$ 5.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CRII: CSR: Adaptive Federated Continuous Learning on Heterogeneous Edge Devices with Unlabeled Data
CRII:CSR:具有未标记数据的异构边缘设备的自适应联合连续学习
- 批准号:
2348279 - 财政年份:2024
- 资助金额:
$ 5.54万 - 项目类别:
Standard Grant