Facilitating Interdisciplinary Teams to Build Better AI-Based Systems

促进跨学科团队构建更好的基于人工智能的系统

基本信息

  • 批准号:
    RGPIN-2021-03538
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Intelligent software systems assist in every area of our lives, such as e-commerce sites, social media, and web searching. When building intelligent software systems with AI components, interdisciplinary teams consisting of (but not limited to) data scientists and software engineers need to work together. These groups have different goals and experience, often leading to friction in the process: Data scientists mainly work in the data exploratory phase to train a high-performing machine learning model, a heavily exploratory and iterative process. Then they deliver the resulting learning code and models to software engineers in order to integrate the model into production code in the production phase. Evidence shows that it is common that the code from the exploratory phase often needs to be refactored in order to accommodate production concerns, such as latency, scalability, and robustness. Additionally, once development and production models drift apart, it is non-trivial to incorporate feedback from the production phase for additional experimentation, often requiring significant coordination. This introduces mistakes, slows down the development process, and increases the need for coordination overhead. Currently, both big tech corporations and small start-up teams struggle with transitioning machine learning ideas into AI components that can be integrated into the software system seamlessly. The main goal of this research program is to foster collaboration and reduce friction between data scientists and software engineers, and provide support to the AI-based software development lifecycle. In particular, we aim to achieve three objectives: (1) Identifying context-specific collaboration pain points and best practices; (2) improving code quality and coding environment in the data exploration phase; and (3) facilitating collaboration between data scientists and software engineers. The main outcome includes the design and development of analysis infrastructure and interventions that support collaboration and system building. This research program will train 10 HQP (2 Ph.D., 3 MASc, 5 USR) through hands-on research practices in large-scale software analyses. The research activities involve in-depth user studies of software practitioners and AI experts, empirical investigation of the problem space, and rigorous design and evaluation of the methods to solve the problem. In addition, all HQP will gain skills and knowledge in software engineering, machine learning, and software development, and will have the chance to work on real, highly impactful software systems and build strong hands-on skills. Given the wide range of application scenarios, our research results can be applied to support collaboration and system building for teams focused on machine learning from different backgrounds, including established companies, start-ups, non-tech corporations, nonprofit, and research institutions in Ontario, in Canada, and internationally.
智能软件系统在我们生活的各个领域都有帮助,例如电子商务网站,社交媒体和网络搜索。在构建具有AI组件的智能软件系统时,由(但不限于)数据科学家和软件工程师组成的跨学科团队需要共同努力。这些团队有不同的目标和经验,通常会导致过程中的摩擦:数据科学家主要在数据探索阶段工作,以训练高性能的机器学习模型,这是一个高度探索和迭代的过程。然后,他们将生成的学习代码和模型交付给软件工程师,以便在生产阶段将模型集成到生产代码中。有证据表明,通常需要对探索阶段的代码进行重构,以适应生产问题,例如延迟、可伸缩性和健壮性。此外,一旦开发和生产模型分离,将来自生产阶段的反馈纳入额外的实验就不是小事,这通常需要大量的协调。这会引入错误,减慢开发过程,并增加对协调开销的需求。目前,大型科技公司和小型初创团队都在努力将机器学习理念转变为可以无缝集成到软件系统中的人工智能组件。该研究计划的主要目标是促进数据科学家和软件工程师之间的合作,减少摩擦,并为基于人工智能的软件开发生命周期提供支持。具体而言,我们的目标是实现三个目标:(1)识别特定于上下文的协作痛点和最佳实践;(2)在数据探索阶段改善代码质量和编码环境;(3)促进数据科学家和软件工程师之间的协作。主要成果包括设计和开发支持协作和系统建设的分析基础设施和干预措施。本研究计划将培养10名HQP(2名博士,3 MASc,5 USR),通过大规模软件分析的实践研究。研究活动涉及软件从业者和人工智能专家的深入用户研究,问题空间的实证调查,以及解决问题的方法的严格设计和评估。此外,所有HQP将获得软件工程,机器学习和软件开发方面的技能和知识,并将有机会在真实的,高度影响力的软件系统上工作,并建立强大的动手能力。鉴于广泛的应用场景,我们的研究成果可以应用于支持来自不同背景的专注于机器学习的团队的协作和系统构建,包括安大略,加拿大和国际上的成熟公司,初创公司,非科技公司,非营利组织和研究机构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhou, Shurui其他文献

Elevating Jupyter Notebook Maintenance Tooling by Identifying and Extracting Notebook Structures
通过识别和提取笔记本结构来提升 Jupyter 笔记本维护工具
CCL3 secreted by hepatocytes promotes the metastasis of intrahepatic cholangiocarcinoma by VIRMA-mediated N6-methyladenosine (m(6)A) modification.
肝细胞分泌的CCL3通过VIRMA介导的N6-甲基腺苷(m6A)修饰促进肝内胆管癌的转移
  • DOI:
    10.1186/s12967-023-03897-y
  • 发表时间:
    2023-01-23
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Zhou, Shurui;Yang, Kege;Chen, Shaojie;Lian, Guoda;Huang, Yuzhou;Yao, Hanming;Zhao, Yue;Huang, Kaihong;Yin, Dong;Lin, Haoming;Li, Yaqing
  • 通讯作者:
    Li, Yaqing
Cancer-specific survival in patients with cholangiocarcinoma after radical surgery: a Novel, dynamic nomogram based on clinicopathological features and serum markers.
  • DOI:
    10.1186/s12885-023-11040-9
  • 发表时间:
    2023-06-12
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Zhou, Shurui;Zhao, Yue;Lu, Yanzong;Liang, Weiling;Ruan, Jianmin;Lin, Lijun;Lin, Haoming;Huang, Kaihong
  • 通讯作者:
    Huang, Kaihong
A LETM2-Regulated PI3K-Akt Signaling Axis Reveals a Prognostic and Therapeutic Target in Pancreatic Cancer.
LETM2 调节的 PI3K-Akt 信号轴揭示了胰腺癌的预后和治疗靶点
  • DOI:
    10.3390/cancers14194722
  • 发表时间:
    2022-09-28
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Zhou, Shurui;Zhong, Ziyi;Lu, Yanzong;Li, Yunlong;Yao, Hanming;Zhao, Yue;Guo, Tairan;Yang, Kege;Li, Yaqing;Chen, Shaojie;Huang, Kaihong;Lian, Guoda
  • 通讯作者:
    Lian, Guoda
GLUT1 Regulates the Tumor Immune Microenvironment and Promotes Tumor Metastasis in Pancreatic Adenocarcinoma via ncRNA-mediated Network.
GLUT1通过ncRNA介导的网络调节肿瘤免疫微环境并促进胰腺腺癌肿瘤转移
  • DOI:
    10.7150/jca.72161
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Li, Fengjiao;He, Chong;Yao, Hanming;Liang, Weiling;Ye, Xijiu;Ruan, Jianmin;Lin, Lijun;Zou, Jinmao;Zhou, Shurui;Huang, Yuzhou;Li, Yaqing;Chen, Shaojie;Huang, Kaihong;Lian, Guoda;Chen, Shangxiang
  • 通讯作者:
    Chen, Shangxiang

Zhou, Shurui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhou, Shurui', 18)}}的其他基金

Facilitating Interdisciplinary Teams to Build Better AI-Based Systems
促进跨学科团队构建更好的基于人工智能的系统
  • 批准号:
    RGPIN-2021-03538
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Facilitating Interdisciplinary Teams to Build Better AI-Based Systems
促进跨学科团队构建更好的基于人工智能的系统
  • 批准号:
    DGECR-2021-00478
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

Cultivating Interdisciplinary Research Teams at the Aging Research Centre-Newfoundland and Labrador
纽芬兰及拉布拉多老龄化研究中心培养跨学科研究团队
  • 批准号:
    487822
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Miscellaneous Programs
Visionary Interdisciplinary Teams Advancing Learning (VITAL) Prize Competition Stage 2 Training
有远见的跨学科团队推进学习(VITAL)有奖竞赛第二阶段培训
  • 批准号:
    2236811
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Building Better Interdisciplinary Pain Teams Across Disciplines
建立更好的跨学科跨学科疼痛团队
  • 批准号:
    10316464
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Building Better Interdisciplinary Pain Teams Across Disciplines
建立更好的跨学科跨学科疼痛团队
  • 批准号:
    10595508
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Facilitating Interdisciplinary Teams to Build Better AI-Based Systems
促进跨学科团队构建更好的基于人工智能的系统
  • 批准号:
    RGPIN-2021-03538
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluating the National Implementation of Virtual Interdisciplinary Pain Care Teams - TelePain
评估虚拟跨学科疼痛护理团队的全国实施情况 - TelePain
  • 批准号:
    10316573
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Facilitating Interdisciplinary Teams to Build Better AI-Based Systems
促进跨学科团队构建更好的基于人工智能的系统
  • 批准号:
    DGECR-2021-00478
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement
EAGER: Exploratory research on the dynamics of convergence in interdisciplinary teams
EAGER:跨学科团队融合动态的探索性研究
  • 批准号:
    2119916
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Does smartphone use really induce neck pain? : Elucidation of paradoxes by interdisciplinary teams
使用智能手机真的会引起颈部疼痛吗?
  • 批准号:
    19H01609
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
FW-HTF-RM: Intelligent Social Network Interventions to Augment Human Cognition for Interdisciplinary Interactions in Project Teams
FW-HTF-RM:智能社交网络干预增强项目团队跨学科互动的人类认知
  • 批准号:
    1928278
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了