Adaptive Intelligent Wireless Networking with Advanced Communication and Machine Learning Techniques
具有先进通信和机器学习技术的自适应智能无线网络
基本信息
- 批准号:571576-2021
- 负责人:
- 金额:$ 8.64万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the recent arrival of 5G wireless standardization and the emerging visions of beyond-5G (B5G) technologies, we are witnessing dramatic developments in wireless services and applications. New technologies and application environments, such as industrial Internet of Things, augmented reality, mobile cloud computing, and mobile data analytics, are creating service demands that stress the capacity and flexibility of the wireless infrastructure. Optimal operation of future wireless systems requires built-in intelligence that adapts to the constantly changing interference patterns, capacity demand, latency constraints, security requirements, and network scale. In collaboration with Ericsson Canada, we propose a new research partnership to develop the needed theories and practical designs of adaptive intelligent wireless networks. Our long-term objective is to understand how the new complexity and dynamics in next-generation wireless systems impact their operation and user experience, and how to integrate artificial intelligence and autonomous adaptation into these systems to manage their complexity and dynamics. In the shorter term of this project, we focus on developing advanced communication and machine learning techniques for 5G and B5G networks.The proposed partnership will enable a unique collaborative project that brings together world-leading engineering expertise from Ericsson and substantial research capacity from the University of Toronto. We will tackle a range of challenging open problems in designing future adaptive intelligent wireless networks. This project will benefit Ericsson Canada and its technology and business partners in Canada, improving their innovation portfolio, system design, customer base, and profitability. It will also contribute to our fundamental understanding on how to build efficient and robust communication systems in Canada.
随着最近5G无线标准化的到来和超5G(B5G)技术的新兴愿景,我们正在见证无线服务和应用的巨大发展。工业物联网、增强现实、移动的云计算和移动的数据分析等新技术和应用环境正在产生服务需求,这些需求强调无线基础设施的容量和灵活性。未来无线系统的最佳运行需要内置智能,以适应不断变化的干扰模式、容量需求、延迟限制、安全要求和网络规模。在与爱立信加拿大合作,我们提出了一个新的研究伙伴关系,以开发所需的理论和自适应智能无线网络的实际设计。我们的长期目标是了解下一代无线系统中新的复杂性和动态性如何影响其操作和用户体验,以及如何将人工智能和自主适应集成到这些系统中以管理其复杂性和动态性。在该项目的短期内,我们将专注于为5G和B5G网络开发先进的通信和机器学习技术。拟议的合作伙伴关系将实现一个独特的合作项目,将爱立信世界领先的工程专业知识与多伦多大学的大量研究能力结合起来。我们将解决一系列具有挑战性的开放问题,在设计未来的自适应智能无线网络。该项目将使爱立信加拿大公司及其在加拿大的技术和业务合作伙伴受益,改善他们的创新组合、系统设计、客户群和盈利能力。它还将有助于我们从根本上了解如何在加拿大建立高效和强大的通信系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liang, BenB其他文献
Liang, BenB的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liang, BenB', 18)}}的其他基金
Dynamic Network Traffic Identification with Scalable and Resilient Machine Learning
通过可扩展且有弹性的机器学习进行动态网络流量识别
- 批准号:
576922-2022 - 财政年份:2022
- 资助金额:
$ 8.64万 - 项目类别:
Alliance Grants
相似国自然基金
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
SBIR Phase I: Intelligent Repeaters for Pervasive Millimeter-Wave Wireless Broadband Connectivity
SBIR 第一阶段:用于普及毫米波无线宽带连接的智能中继器
- 批准号:
2335455 - 财政年份:2024
- 资助金额:
$ 8.64万 - 项目类别:
Standard Grant
Multi-Beam and Beam-Scanning Antenna Arrays for Intelligent Wireless System
用于智能无线系统的多波束和波束扫描天线阵列
- 批准号:
DE240100787 - 财政年份:2024
- 资助金额:
$ 8.64万 - 项目类别:
Discovery Early Career Researcher Award
Intelligent Reflecting Surface-enabled High-speed 6G Wireless Networks
支持智能反射表面的高速 6G 无线网络
- 批准号:
DP230100603 - 财政年份:2023
- 资助金额:
$ 8.64万 - 项目类别:
Discovery Projects
I-Corps: Intelligent wireless sensor network platform for extended human health monitoring
I-Corps:用于扩展人体健康监测的智能无线传感器网络平台
- 批准号:
2305389 - 财政年份:2023
- 资助金额:
$ 8.64万 - 项目类别:
Standard Grant
IPOSEE: Intelligent and Proactive Optimisation for Service-centric Wireless Networks (UoS joint proposal lead partner)
IPOSEE:以服务为中心的无线网络的智能和主动优化(UoS 联合提案牵头合作伙伴)
- 批准号:
EP/X038971/1 - 财政年份:2023
- 资助金额:
$ 8.64万 - 项目类别:
Research Grant
Collaborative Research: SWIFT: Data Driven Learning and Optimization in Reconfigurable Intelligent Surface Enabled Industrial Wireless Network for Advanced Manufacturing
合作研究:SWIFT:先进制造可重构智能表面工业无线网络中的数据驱动学习和优化
- 批准号:
2414946 - 财政年份:2023
- 资助金额:
$ 8.64万 - 项目类别:
Standard Grant
Designing intelligent reflecting surface-aided next-generation 6G/Beyond-5G wireless networks
设计智能反射表面辅助下一代 6G/Beyond-5G 无线网络
- 批准号:
22KJ0172 - 财政年份:2023
- 资助金额:
$ 8.64万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Wireless power transfer technology based on intelligent radio propagation control using only passive elements and a single sensor
仅使用无源元件和单个传感器的基于智能无线电传播控制的无线功率传输技术
- 批准号:
23K13328 - 财政年份:2023
- 资助金额:
$ 8.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
IPOSEE: Intelligent and Proactive Optimisation for Service-centric Wireless Networks (RANPLAN joint proposal non-lead partner)
IPOSEE:以服务为中心的无线网络的智能和主动优化(RANPLAN联合提案非牵头合作伙伴)
- 批准号:
EP/X039935/1 - 财政年份:2023
- 资助金额:
$ 8.64万 - 项目类别:
Research Grant
SWIFT: Intelligent Spatio-Temporal Metamaterial Massive MIMO Aperture Arrays with Hybrid Learning-based Channel Classifiers for Spectrum-Efficient Secured Wireless Communication
SWIFT:智能时空超材料大规模 MIMO 孔径阵列,具有基于混合学习的信道分类器,可实现频谱高效的安全无线通信
- 批准号:
2229384 - 财政年份:2022
- 资助金额:
$ 8.64万 - 项目类别:
Standard Grant