Data-Driven Approaches for Digital Twins of Manufacturing Processes

制造流程数字孪生的数据驱动方法

基本信息

  • 批准号:
    576990-2022
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This collaborative research aims to advance the digital twins of manufacturing processes to optimize plant distribution, enhance manufacturing, and enable better decision-making. A digital twin is a digital re-creation of an object or environment. Data collection, analytics, simulation, and other data-driven capabilities can help optimize its physical counterpart. Computational studies can be performed with machine learning and modern software engineering techniques, where data are leveraged to guide decision-making and control. This project aims to comprehensively understand the engineering tasks within the digital twin paradigm and how to approach such tasks using data analytics, machine learning, and deep learning. Such studies include designing and deploying i) machine-learning-based control systems for processes, equipment, and environmental comfort; ii) data-driven simulation for energy and equipment usage; iii) visualization of geometric reconstruction and mapping of environment variables, such as temperature and humidity, from real-time images of assets and the environment; iv) data integration to manage and exchange data between software components of digital twins; v) predictive maintenance using historical data to calculate assets' health and remaining useful life; vi) edge-fog approaches, where computing resources and storage are offloaded from local processors to the servers in the network in a federated manner, to improve response time. In this collaborative research project, the Canadian team will combine its expertise with the Portuguese team at the University of Porto to advance knowledge and technology in the digital twin domain. This research will benefit a diverse Canadian industry, such as smart factories and advanced manufacturing, in their automation processes by providing a progressive and structured approach to realizing digital twin automation. The proposed research will also stage a tremendous HQP training opportunity and equip Canadian industries with experts in engineering digital twins for manufacturing processes, a sector believed to be in high demand in the next five to ten years.
这项合作研究旨在推动制造过程的数字孪生兄弟,以优化工厂分布,增强制造,并使更好的决策。数字孪生兄弟是对物体或环境的数字再创造。数据收集、分析、模拟和其他数据驱动的功能可以帮助优化其物理对应项。计算研究可以用机器学习和现代软件工程技术进行,其中数据被用来指导决策和控制。本项目旨在全面了解数字孪生范式中的工程任务,以及如何使用数据分析、机器学习和深度学习来处理这些任务。这些研究包括:i)为流程、设备和环境舒适度设计和部署基于机器学习的控制系统;ii)能源和设备使用的数据驱动模拟;iii)从资产和环境的实时图像可视化几何重建和环境变量的映射,例如温度和湿度;iv)数据集成以管理和在数字双胞胎软件组件之间交换数据;v)使用历史数据进行预测性维护以计算资产的健康状况和剩余使用寿命;vi)边缘雾方法,其中以联合的方式将计算资源和存储从本地处理器卸载到网络中的服务器,以改善响应时间。在这个合作研究项目中,加拿大团队将把自己的专业知识与波尔图大学的葡萄牙团队结合起来,推进数字孪生领域的知识和技术。这项研究将通过提供一种渐进和结构化的方法来实现数字孪生自动化,从而使加拿大的各种行业,如智能工厂和先进制造,在其自动化过程中受益。这项拟议的研究还将提供一个巨大的HQP培训机会,并为加拿大各行业配备制造过程中的数字孪生兄弟工程专家,据信这一行业在未来五到十年内需求旺盛。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Capretz, MiriamMAM其他文献

Capretz, MiriamMAM的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Capretz, MiriamMAM', 18)}}的其他基金

Towards a Cleaner Environment: Smart Grid Management in the Presence of Electric Vehiecles, Renewable Energy Sources, and Storage
迈向更清洁的环境:电动汽车、可再生能源和存储的智能电网管理
  • 批准号:
    577133-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

MEDAL - Methodological Excellence In Data-Driven Approaches To Linguistics
奖章 - 数据驱动语言学方法的卓越方法论
  • 批准号:
    10047684
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    EU-Funded
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
  • 批准号:
    2316400
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Cooperative Agreement
Performance maximization of finite-time and repetitive movement based on data driven controller design approaches
基于数据驱动控制器设计方法的有限时间和重复运动的性能最大化
  • 批准号:
    23K03909
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on a control system for total intravenous anesthesia using data-driven approaches
使用数据驱动方法研究全静脉麻醉控制系统
  • 批准号:
    23K03912
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
  • 批准号:
    2316402
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
  • 批准号:
    2316401
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Cooperative Agreement
RAPID: DRL AI: Data Driven Approaches to Integrating AI in K-12 Education Using Social Media Analysis
RAPID:DRL AI:利用社交媒体分析将 AI 集成到 K-12 教育中的数据驱动方法
  • 批准号:
    2332306
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Integrating clinical, data-driven and in-vitro approaches to the study of host-pathogen interactions in bovine digital dermatitis
整合临床、数据驱动和体外方法来研究牛指皮炎宿主-病原体相互作用
  • 批准号:
    BB/X008754/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
Integrating clinical, data-driven and in-vitro approaches to the study of host-pathogen interactions in bovine digital dermatitis
整合临床、数据驱动和体外方法来研究牛指皮炎宿主-病原体相互作用
  • 批准号:
    BB/X008878/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
  • 批准号:
    2316399
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了