Quantum Software and Algorithms
量子软件和算法
基本信息
- 批准号:CRC-2021-00206
- 负责人:
- 金额:$ 5.1万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Canada Research Chairs
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum computing is an interdisciplinary field that is developing a new type of computing device based on a quantum system called a qubit. Simulating chemical reactions, searching unstructured spaces, and optimizing large-scale industrial processes are all problems that are intractable for regular computers to solve at a large scale, but are promising applications of quantum computers (QCs). Over the past decade, massive progress has been made in the field, with billions of dollars invested in the area by governments, multinational companies, and the startup industry. We now have QCs with over 100 usable qubits, which is a significant development, but still far from the thousands to millions needed to accurately solve life-sized, real-world problems. Building QCs is a major engineering challenge; building high-quality ones in a scalable manner even more so. Today's QCs have been termed "noisy, intermediate-scale quantum" devices due to their limited processing power and the non-trivial amount of noise that occurs during computation. Qubits are extremely sensitive to external effects, and until more precise control becomes possible, and measures such as large-scale error-correction can be implemented, it is critical that our algorithms are designed to make the best use of today's devices despite the presence of noise. The aims of this CRC research program are to design, implement, and apply new software and methods that enable us to better characterize, mitigate, and adapt to noise in QCs.The program has three objectives. The first is to develop and implement effective noise-aware quantum compilation techniques that will inform us how to program and run algorithms on hardware to obtain the best possible results. The second is to create advanced, adaptive methods for quantum tomography to better characterize device noise and facilitate the engineering of cutting-edge quantum hardware. The final objective is to put into practice the outcomes of the first two, and develop robust quantum algorithms for current-generation quantum hardware that can solve meaningful problems even in a noisy environment. These algorithms will then be tested on the novel devices being developed at UBC. Together, these methods will enable us to use the QCs built over the next decade to their fullest potential, establish a valuable cycle of quantum software-hardware co-design in the Canadian ecosystem, and pave the way for future generations of hardware.
量子计算是一个跨学科领域,正在开发一种基于称为量子比特的量子系统的新型计算设备。模拟化学反应、搜索非结构化空间、优化大规模工业过程,这些都是常规计算机难以大规模解决的问题,但却是量子计算机(QCs)很有前途的应用。在过去的十年中,该领域取得了巨大的进步,政府,跨国公司和创业公司在该领域投资了数十亿美元。我们现在有了超过100个可用量子位的QC,这是一个重大的发展,但仍然远远没有达到精确解决真人大小的现实世界问题所需的数千到数百万个量子位。构建QC是一项重大的工程挑战;以可扩展的方式构建高质量的QC更是如此。今天的量子计算机被称为“有噪声的、中等规模的量子”设备,因为它们有限的处理能力和计算过程中出现的非平凡的噪声量。量子比特对外部效应非常敏感,在更精确的控制成为可能之前,并且可以实施大规模纠错等措施,至关重要的是,我们的算法设计要充分利用当今的设备,尽管存在噪声。该CRC研究计划的目的是设计,实施和应用新的软件和方法,使我们能够更好地表征,减轻和适应QC中的噪声。该计划有三个目标。首先是开发和实现有效的噪声感知量子编译技术,这将告诉我们如何在硬件上编程和运行算法以获得最佳结果。第二个目标是为量子断层扫描创建先进的自适应方法,以更好地表征设备噪声,并促进尖端量子硬件的工程化。最终的目标是将前两项的成果付诸实践,并为当前一代量子硬件开发强大的量子算法,即使在嘈杂的环境中也可以解决有意义的问题。然后,这些算法将在UBC正在开发的新设备上进行测试。总之,这些方法将使我们能够充分利用未来十年构建的QC,在加拿大生态系统中建立量子软硬件协同设计的宝贵周期,并为未来几代硬件铺平道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DiMatteo, Olivia其他文献
DiMatteo, Olivia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DiMatteo, Olivia', 18)}}的其他基金
Software and algorithms for enabling noise-aware quantum computation on near-term devices
用于在近期设备上实现噪声感知量子计算的软件和算法
- 批准号:
DGECR-2022-00405 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Launch Supplement
Software and algorithms for enabling noise-aware quantum computation on near-term devices
用于在近期设备上实现噪声感知量子计算的软件和算法
- 批准号:
RGPIN-2022-04609 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
A parallel algorithm for the efficient compilation of quantum circuits
一种高效编译量子电路的并行算法
- 批准号:
474863-2015 - 财政年份:2017
- 资助金额:
$ 5.1万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A parallel algorithm for the efficient compilation of quantum circuits
一种高效编译量子电路的并行算法
- 批准号:
474863-2015 - 财政年份:2016
- 资助金额:
$ 5.1万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A parallel algorithm for the efficient compilation of quantum circuits
一种高效编译量子电路的并行算法
- 批准号:
474863-2015 - 财政年份:2015
- 资助金额:
$ 5.1万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Mutually unbiased bases and mutually orthogonal Latin squares in multi-particle systems
多粒子系统中的互无偏基和互正交拉丁方
- 批准号:
442547-2013 - 财政年份:2013
- 资助金额:
$ 5.1万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Mutually unbiased bases and mutually orthogonal Latin squares
互无偏基和互正交拉丁方
- 批准号:
450453-2013 - 财政年份:2013
- 资助金额:
$ 5.1万 - 项目类别:
University Undergraduate Student Research Awards
Feedback from Galactic Star Clusters
来自银河星团的反馈
- 批准号:
431383-2012 - 财政年份:2012
- 资助金额:
$ 5.1万 - 项目类别:
University Undergraduate Student Research Awards
Microscopic modeling of geminate recombination of charge carriers in semiconductors
半导体中电荷载流子双重组的微观模型
- 批准号:
417410-2011 - 财政年份:2011
- 资助金额:
$ 5.1万 - 项目类别:
University Undergraduate Student Research Awards
相似海外基金
RII Track-4: NSF: Extracting Pan Genomic Information from Metagenomic Data: Distributed Algorithms and Scalable Software
RII Track-4:NSF:从宏基因组数据中提取泛基因组信息:分布式算法和可扩展软件
- 批准号:
2327456 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Standard Grant
OAC Core: High Performance Computing Algorithms and Software for large-scale Mass Spectrometry based Omics
OAC Core:基于大规模质谱组学的高性能计算算法和软件
- 批准号:
2312599 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
Standard Grant
CAREER: Toward Real-Time, Constraint-Aware Control of Complex Dynamical Systems: from Theory and Algorithms to Software Tools
职业:实现复杂动力系统的实时、约束感知控制:从理论和算法到软件工具
- 批准号:
2238424 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
- 批准号:
2348306 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
Continuing Grant
CAREER: Molecular mechanisms, algorithms and software for design and analysis of genome perturbation experiments
职业:用于设计和分析基因组扰动实验的分子机制、算法和软件
- 批准号:
2238831 - 财政年份:2023
- 资助金额:
$ 5.1万 - 项目类别:
Continuing Grant
Software and algorithms for enabling noise-aware quantum computation on near-term devices
用于在近期设备上实现噪声感知量子计算的软件和算法
- 批准号:
DGECR-2022-00405 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Launch Supplement
Software and algorithms for enabling noise-aware quantum computation on near-term devices
用于在近期设备上实现噪声感知量子计算的软件和算法
- 批准号:
RGPIN-2022-04609 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
New Polynomial GCD and Factorization Algorithms and Software for Maple
Maple 的新多项式 GCD 和因式分解算法和软件
- 批准号:
576162-2022 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
Alliance Grants
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
- 批准号:
2217003 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
- 批准号:
2217032 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
Standard Grant