Power-Efficient Spiking Neural Networks
高能效尖峰神经网络
基本信息
- 批准号:576712-2022
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Idea to Innovation
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Inspired by the neurons and synapses of human's brain, we focus on exploring the advantages and disadvantages of spiking neural networks (SNNs). Then scalable and energy-efficient SNNs have been proposed to use time (spikes) of the signal to process information. The spike is essentially a binary event, it is either 0 or 1. The main advantage of SNNs is that it can make the full use of time and space information. Using time as an additional input dimension, SNNs record valuable information in a sparse manner. The neuron in SNNs is in an active state only when receiving or generating a peak signal, which means that it is driven by events, so it can save energy. If there is no spike coming, the neuron will remain idle. In addition, the input value in SNN is 1 or 0, which also reduces the multiplication operation, to a less computation load. There are several ways to encode the input data of SNNS. When looking into ways to reduce the hardware cost of neural networks, stochastic computing (SC) becomes appealing due to the simple logic used for complex computation. Unlike the conventional binary encoding, SC operates on randomly generated binary sequences. Using random numbers to encode input data, the SNNs are called stochastic SNNs. In this project, we focus on the design, evaluation and implementation of stochastic SNNs. We will also explore the market opportunity and work toward the commercialization of the developed technology.
受人脑神经元和突触的启发,我们重点探索尖峰神经网络(SNN)的优势和劣势。然后提出了可扩展的、能量高效的SNN来利用信号的时间(尖峰)来处理信息。脉冲本质上是一个二元事件,它要么是0,要么是1。SNN的主要优势是它可以充分利用时间和空间信息。SNN使用时间作为额外的输入维度,以稀疏的方式记录有价值的信息。SNN中的神经元只有在接收或产生峰值信号时才处于激活状态,这意味着它是由事件驱动的,所以它可以节省能量。如果没有尖峰出现,神经元将保持空闲状态。此外,SNN中的输入值为1或0,这也减少了乘法运算,从而减少了运算量。有多种方法可以对SNN的输入数据进行编码。在寻找降低神经网络硬件成本的方法时,随机计算(SC)由于用于复杂计算的简单逻辑而变得有吸引力。与传统的二进制编码不同,SC对随机生成的二进制序列进行操作。使用随机数对输入数据进行编码,这些SNN称为随机SNN。在本项目中,我们重点研究了随机SNN的设计、评估和实现。我们还将探索市场机会,并努力将已开发的技术商业化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Han, JieJ其他文献
Han, JieJ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Han, JieJ', 18)}}的其他基金
Efficient computing systems for deep learning and combinatorial optimization
用于深度学习和组合优化的高效计算系统
- 批准号:
552712-2020 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Alliance Grants
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
- 批准号:
2338683 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
- 批准号:
2328281 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
- 批准号:
2340356 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
- 批准号:
24K15389 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)