Performance Management of Enterprise Application Systems in the Cloud Era
云时代企业应用系统的性能管理
基本信息
- 批准号:RGPIN-2018-04224
- 负责人:
- 金额:$ 4.95万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Enterprise applications, e.g., Web and interactive big data services, need to respond quickly to user transactions. Consequently, system operators need techniques that ensure applications meet their response time objectives while utilizing computing resources in a cost-effective way. Several factors necessitate new performance management techniques for such systems. For example, these applications are being increasingly deployed on public cloud platforms, which can suffer from unpredictable performance degradations due to contention for shared cloud resources. Novel approaches are needed to manage system performance in the presence of such platform induced interference. Furthermore, these systems typically experience bursty workloads, which can degrade performance in complex ways. This motivates new techniques that can predict and mitigate the impact of burstiness. This program seeks to address such challenges. We will investigate new techniques that allow an operator to accurately predict the cloud resources needed by a system to satisfy a desired response time target while handling a given workload. Techniques based on queuing analysis typically require an expert to manually author a system model. Also, accuracy can be impacted when predicting for bursty workloads. Machine learning (ML) techniques promise a data-driven alternative to queuing analysis. However, existing work does not provide clear intuition on tasks that can have a big impact on accuracy such as ML technique selection, featurization, and training data selection. My program will address this knowledge gap and realize automated prediction techniques that do not burden an operator with such tasks. We will also explore runtime techniques to mitigate the impact of burstiness and interference. Existing work has not focused on handling the adverse impact of service demand burstiness, i.e., user transaction patterns that cause sustained periods of high or low utilizations at system resources. Our initial work suggests that such burstiness can be tamed using fewer resources by intelligently reordering incoming transactions. We will build on this insight to realize new runtime scheduling techniques. As part of this theme, we will also exploit our ongoing work on interference detection to automatically scale cloud resource instances , e.g., containers, in response to interference. Existing approaches do not consider how individual transaction types get impacted by interference at a given instance. We will build models that can use such fine-grained information to intelligently distribute transactions to instances such that interference is mitigated using minimum instances.This program will expand the state of the art in data-driven performance prediction and management research. Canadian organizations can exploit the research to reduce costs related to poor performance and resource over-provisioning.
企业应用程序,例如,Web和交互式大数据服务,需要快速响应用户交易。因此,系统运营商需要确保应用程序满足其响应时间目标的技术,同时以具有成本效益的方式利用计算资源。有几个因素需要新的性能管理技术,这样的系统。例如,这些应用程序越来越多地部署在公共云平台上,由于共享云资源的竞争,这些平台可能会遭受不可预测的性能下降。需要新的方法来管理系统性能,在这种平台引起的干扰的存在。此外,这些系统通常会遇到突发性工作负载,这可能会以复杂的方式降低性能。这激发了可以预测和减轻突发性影响的新技术。该计划旨在应对这些挑战。我们将研究新技术,使操作员能够准确预测系统所需的云资源,以满足所需的响应时间目标,同时处理给定的工作负载。基于排队分析的技术通常需要专家手动创建系统模型。此外,在预测突发工作负载时,准确性可能会受到影响。机器学习(ML)技术有望成为排队分析的数据驱动替代方案。然而,现有的工作并没有对可能对准确性产生重大影响的任务提供明确的直觉,例如ML技术选择,特征化和训练数据选择。我的程序将解决这一知识差距,并实现自动预测技术,不负担操作员这样的任务。我们还将探索运行时技术,以减轻突发性和干扰的影响。现有的工作并没有集中在处理服务需求突发的不利影响上,即,导致系统资源持续高或低利用率的用户事务模式。我们的初步工作表明,这种突发性可以驯服使用更少的资源,通过智能重新排序传入的事务。我们将在此基础上实现新的运行时调度技术。作为该主题的一部分,我们还将利用我们正在进行的干扰检测工作来自动扩展云资源实例,例如,容器,以应对干扰。现有的方法没有考虑在给定实例中各个事务类型如何受到干扰的影响。我们将建立模型,可以使用这种细粒度的信息来智能地将事务分配到实例,从而使用最少的实例来减轻干扰。该计划将扩展数据驱动的性能预测和管理研究的最新技术。加拿大的组织可以利用这项研究来降低与性能差和资源过度配置相关的成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krishnamurthy, Diwakar其他文献
Krishnamurthy, Diwakar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krishnamurthy, Diwakar', 18)}}的其他基金
AR/MR software for improving communication and education outcomes of minimally verbal autistic people
AR/MR 软件可改善语言能力极低的自闭症患者的沟通和教育成果
- 批准号:
571326-2021 - 财政年份:2021
- 资助金额:
$ 4.95万 - 项目类别:
Alliance Grants
Performance Management of Enterprise Application Systems in the Cloud Era
云时代企业应用系统的性能管理
- 批准号:
RGPIN-2018-04224 - 财政年份:2021
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Performance Management of Enterprise Application Systems in the Cloud Era
云时代企业应用系统的性能管理
- 批准号:
RGPIN-2018-04224 - 财政年份:2020
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Scalable Fog and Cloud Computing for Industrial IoT
适用于工业物联网的可扩展雾和云计算
- 批准号:
539276-2019 - 财政年份:2019
- 资助金额:
$ 4.95万 - 项目类别:
Engage Grants Program
Performance Management of Enterprise Application Systems in the Cloud Era
云时代企业应用系统的性能管理
- 批准号:
RGPIN-2018-04224 - 财政年份:2019
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Performance Management of Enterprise Application Systems in the Cloud Era
云时代企业应用系统的性能管理
- 批准号:
RGPIN-2018-04224 - 财政年份:2018
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Performance evaluation and management of enterprise application systems
企业应用系统性能评估与管理
- 批准号:
311746-2013 - 财政年份:2017
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Performance management tools for big data applications
大数据应用的性能管理工具
- 批准号:
513200-2017 - 财政年份:2017
- 资助金额:
$ 4.95万 - 项目类别:
Collaborative Research and Development Grants
Predictive analytics for Smarttarget: Proactive performance anomaly detection techniques for cloud-based Web services
Smarttarget 的预测分析:基于云的 Web 服务的主动性能异常检测技术
- 批准号:
514610-2017 - 财政年份:2017
- 资助金额:
$ 4.95万 - 项目类别:
Engage Grants Program
Performance evaluation and management of enterprise application systems
企业应用系统性能评估与管理
- 批准号:
311746-2013 - 财政年份:2016
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
PFI-TT: Artificial Intelligence System for Enterprise Performance Management that Integrates Causal Analytics and Human Expertise
PFI-TT:集成因果分析和人类专业知识的企业绩效管理人工智能系统
- 批准号:
2141124 - 财政年份:2022
- 资助金额:
$ 4.95万 - 项目类别:
Standard Grant
I-Corps: Knowledge Graph Embeddings-based Explainable Artificial Intelligence for Enterprise Performance Management
I-Corps:用于企业绩效管理的基于知识图嵌入的可解释人工智能
- 批准号:
2102803 - 财政年份:2021
- 资助金额:
$ 4.95万 - 项目类别:
Standard Grant
Performance Management of Enterprise Application Systems in the Cloud Era
云时代企业应用系统的性能管理
- 批准号:
RGPIN-2018-04224 - 财政年份:2021
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Performance Management of Enterprise Application Systems in the Cloud Era
云时代企业应用系统的性能管理
- 批准号:
RGPIN-2018-04224 - 财政年份:2020
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Performance Management of Enterprise Application Systems in the Cloud Era
云时代企业应用系统的性能管理
- 批准号:
RGPIN-2018-04224 - 财政年份:2019
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Performance Management of Enterprise Application Systems in the Cloud Era
云时代企业应用系统的性能管理
- 批准号:
RGPIN-2018-04224 - 财政年份:2018
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual
Cloud-based enterprise performance management platform
基于云的企业绩效管理平台
- 批准号:
531148-2018 - 财政年份:2018
- 资助金额:
$ 4.95万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Cloud-based enterprise performance management platform
基于云的企业绩效管理平台
- 批准号:
522894-2018 - 财政年份:2018
- 资助金额:
$ 4.95万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Cloud-based enterprise performance management platform
基于云的企业绩效管理平台
- 批准号:
514453-2017 - 财政年份:2017
- 资助金额:
$ 4.95万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Performance evaluation and management of enterprise application systems
企业应用系统性能评估与管理
- 批准号:
311746-2013 - 财政年份:2017
- 资助金额:
$ 4.95万 - 项目类别:
Discovery Grants Program - Individual