Weak supervision with imperfect annotations for medical image computing
医学图像计算的弱监督和不完善的注释
基本信息
- 批准号:RGPIN-2021-02914
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Medical image computing (MIC) aims to develop computational methods for solving problems pertinent to medical image interpretation and understanding. Recent advances in machine learning have made a big leap in MIC and we have started to witness their influence on our daily lives, ranging from 3D human embryo/organ visualization to intelligent examination of lung scans for COVID-19 checkup. Moreover, the healthcare industry is increasingly embracing the cloud services powered by machine learning techniques, such as Google Cloud healthcare and IBM Watson Health. In the future, the envisioned MIC solutions are expected to free clinicians from tedious daily operations on easy cases, to provide physicians a second opinion, and to facilitate biomedical researchers for numerical biomarker discovery. Meanwhile, there are still many hurdles to overcome. In most real-world MIC tasks, it is extremely difficult to attain high quality datasets that can be used in strong supervision methods due to the high cost of medical data labeling; in contrast, weak annotation, or imperfect annotation, is much easier to access. The imperfect annotation in various MIC tasks makes machine learning techniques working with weak supervision to be highly desired. With my long-term goal to leverage machine learning techniques and computer vision algorithms to improve medical imaging relevant healthcare, this research proposal aims to innovate different weak supervision algorithms to extract medical information that is not explicitly available in imperfect annotations. Three different topics will be the major directions in this proposal, including: (1) learning anomaly from sparse, extremely unbalanced annotated medical images, through innovating representation learning methods that fuse batch contrastive learning and generative learning; (2) learning from noisy labeled medical images, by incorporating Bayesian inference into deep learning towards a unified framework; (3) inference from imprecision annotated medical images, by developing a unified weak-supervision region-of-interest segmentation pipeline that combines class activation map methods and multiple instance learning. Potential impact of this proposal includes (1) inventing solutions for medical image computing with imperfect annotation, which will open a door for the massive existing medical images to become directly usable in MIC research and (2) proposing representation learning methods that will be helpful to discover numerical biomarkers of abnormal, rare cases. Though our target application domain is medical image computing, the solutions proposed in this research are also transferable to many image analysis and computer vision tasks. Besides, the HQP trained through this research program will get training on both scientific theories and application-oriented developments, that would be valuable in their future medical imaging and machine learning careers.
医学图像计算(MIC)旨在开发解决与医学图像解释和理解相关问题的计算方法。机器学习的最新进展使 MIC 取得了巨大飞跃,我们已经开始见证它们对我们日常生活的影响,从 3D 人类胚胎/器官可视化到用于 COVID-19 检查的肺部扫描智能检查。此外,医疗保健行业越来越多地采用由机器学习技术支持的云服务,例如 Google Cloud 医疗保健和 IBM Watson Health。未来,设想的 MIC 解决方案有望将临床医生从简单病例的繁琐日常操作中解放出来,为医生提供第二意见,并促进生物医学研究人员发现数字生物标志物。与此同时,仍有许多障碍需要克服。在大多数现实世界的 MIC 任务中,由于医疗数据标记的成本高昂,获得可用于强监督方法的高质量数据集是极其困难的;相反,弱注释或不完善的注释更容易访问。各种 MIC 任务中的不完善注释使得弱监督下的机器学习技术非常受欢迎。我的长期目标是利用机器学习技术和计算机视觉算法来改善医学成像相关的医疗保健,本研究提案旨在创新不同的弱监督算法,以提取在不完善的注释中未明确提供的医学信息。三个不同的主题将是该提案的主要方向,包括:(1)通过融合批量对比学习和生成学习的创新表示学习方法,从稀疏、极度不平衡的注释医学图像中学习异常; (2)通过将贝叶斯推理纳入深度学习以形成统一的框架,从噪声标记的医学图像中进行学习; (3)通过开发结合类激活图方法和多实例学习的统一弱监督感兴趣区域分割管道,从不精确注释的医学图像中进行推理。 该提案的潜在影响包括(1)发明不完善注释的医学图像计算解决方案,这将为大量现有医学图像直接用于 MIC 研究打开大门;(2)提出表示学习方法,这将有助于发现异常、罕见病例的数字生物标志物。虽然我们的目标应用领域是医学图像计算,但本研究中提出的解决方案也可应用于许多图像分析和计算机视觉任务。此外,通过该研究项目培训的总部人员将获得科学理论和面向应用的开发方面的培训,这对他们未来的医学成像和机器学习职业生涯非常有价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li, Xingyu其他文献
Clinical characteristics and management of immune checkpoint inhibitor-related cardiotoxicity: A single-center experience.
- DOI:
10.3389/fcvm.2023.1093383 - 发表时间:
2023 - 期刊:
- 影响因子:3.6
- 作者:
Xiao, Junjuan;Li, Xingyu;Wang, Xuan;Guan, Yaping;Liu, Hairong;Liang, Jing;Li, Yan;Wang, Baocheng;Wang, Jun - 通讯作者:
Wang, Jun
A retrospective analysis using deep-learning models for prediction of survival outcome and benefit of adjuvant chemotherapy in stage II/III colorectal cancer
- DOI:
10.1007/s00432-022-03976-5 - 发表时间:
2022-03-24 - 期刊:
- 影响因子:3.6
- 作者:
Li, Xingyu;Jonnagaddala, Jitendra;Xu, Xu Steven - 通讯作者:
Xu, Xu Steven
OOCDB: A Comprehensive, Systematic, and Real-time Organs-on-a-chip Database.
- DOI:
10.1016/j.gpb.2023.01.001 - 发表时间:
2023-04 - 期刊:
- 影响因子:9.5
- 作者:
Li, Jian;Liang, Weicheng;Chen, Zaozao;Li, Xingyu;Gu, Pan;Liu, Anna;Chen, Pin;Li, Qiwei;Mei, Xueyin;Yang, Jing;Liu, Jun;Jiang, Lincao;Gu, Zhongze - 通讯作者:
Gu, Zhongze
Circulating blood biomarkers correlated with the prognosis of advanced triple negative breast cancer.
- DOI:
10.1186/s12905-023-02871-6 - 发表时间:
2024-01-13 - 期刊:
- 影响因子:2.5
- 作者:
Li, Xingyu;Zhang, Yanyan;Zhu, Cheng;Xu, Wentao;Hu, Xiaolei;Martinez, Domingo Antonio Sanchez;Romero, Jose Luis Alonso;Yan, Ming;Dai, Ying;Wang, Hua - 通讯作者:
Wang, Hua
Improving feature extraction from histopathological images through a fine-tuning ImageNet model.
- DOI:
10.1016/j.jpi.2022.100115 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Li, Xingyu;Cen, Min;Xu, Jinfeng;Zhang, Hong;Xu, Xu Steven - 通讯作者:
Xu, Xu Steven
Li, Xingyu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li, Xingyu', 18)}}的其他基金
Weak supervision with imperfect annotations for medical image computing
医学图像计算的弱监督和不完善的注释
- 批准号:
RGPIN-2021-02914 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Weak supervision with imperfect annotations for medical image computing
医学图像计算的弱监督和不完善的注释
- 批准号:
DGECR-2021-00174 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Launch Supplement
相似海外基金
CAREER: Continual Learning with Evolving Memory, Soft Supervision, and Cross-Domain Knowledge - Foundational Theory and Advanced Algorithms
职业:利用进化记忆、软监督和跨领域知识进行持续学习——基础理论和高级算法
- 批准号:
2338506 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
The role of BET proteins in pathological cardiac remodeling
BET蛋白在病理性心脏重塑中的作用
- 批准号:
10538142 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
CAREER: Learning Structured Models with Natural Language Supervision
职业:利用自然语言监督学习结构化模型
- 批准号:
2238240 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
- 批准号:
10672785 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Integration of stepped care for Perinatal Mood and Anxiety Disorders among Women Living with HIV in Kenya
肯尼亚艾滋病毒感染妇女围产期情绪和焦虑障碍的分级护理一体化
- 批准号:
10677075 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Equipping social workers on the front line: The child welfare and addiction specialist fellowship program
为前线的社会工作者提供装备:儿童福利和成瘾专家奖学金计划
- 批准号:
10682109 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
A comparative evaluation of overdose prevention programs in New York City and Rhode Island
纽约市和罗德岛州药物过量预防计划的比较评估
- 批准号:
10629749 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Building Research Capacity for Implementation of Outcomes Research and Evidence-Based trauma care after Mass Violence, in Ukraine.
在乌克兰开展大规模暴力事件后实施结果研究和循证创伤护理的研究能力建设。
- 批准号:
10665360 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别: