Intelligent and Integrated Control of V2X-Enabled Autonomous Vehicles using Deep Reinforcement Learning

使用深度强化学习对支持 V2X 的自动驾驶车辆进行智能集成控制

基本信息

  • 批准号:
    RGPIN-2021-02839
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

High-profile autonomous vehicle failures caused by unreliable decision making systems have impeded their uptake. These failures are often due to the limited and unreliable information obtained by the vehicle's on-board sensors about its surrounding environment. This "sensory" challenge can be overcome by leveraging vehicle-to-everything (V2X) communications, which would enable autonomous vehicles to communicate wirelessly with each other, nearby infrastructure and the environment. Autonomous vehicles can achieve a more accurate and comprehensive picture of its surrounding when the critical information received through V2X communications is combined with the typical sensory data. An intelligent and integrated control decision making system is required to realize the perfect combination of autonomous driving and V2X communications. However, how to jointly optimize vehicle control and communication control in an integrated framework toward safe and efficient autonomous driving is an unsolved challenge. The system would need to include two types of controls: (1) autonomous driving control of the vehicles and; (2) communication control of the vehicular networks. Compared with the traditional control approaches, Deep Reinforcement Learning (DRL) can introduce ambient intelligence into connected and autonomous vehicles. My proposed research program will provide a framework to optimize an intelligent and integrated control decision making system based on DRL. It will span three activities: DRL-based Vehicle Control with Enhanced Perception and Cooperation through V2X. I will develop DRL algorithms that can learn "what and when to communicate", jointly with how to leverage the communicated information to make intelligent vehicle control decisions under the assumption of ideal communications with no cost. Robust DRL-based Vehicle Control with Non-Ideal V2X Communications. I will investigate the trade-off between the benefit of communications to improve control performance and the cost of communications, with the objective of making optimal decisions on the "what and when to communicate" problem. Moreover, I will develop robust and safe DRL algorithms for autonomous driving that can handle the uncertainty due to non-ideal V2X communications. Joint DRL-based Vehicle and Radio Resource Control toward Perfect Combination of Autonomous Driving and V2X Communications. "How to communicate", i.e., how to control the scarce radio resources, is closely interrelated with vehicle control, as the communication performance will impact the driving perception. My goal is to consider tighter integration of the two types of control to achieve a global optimal solution for V2X-enabled autonomous driving. Through the above activities, my research program promises to improve the reliability of autonomous vehicles thereby accelerating their adoption, easing road congestion, reducing fuel consumption, and providing a more comfortable and safer experience for passengers.
由不可靠的决策系统引起的备受瞩目的自动驾驶汽车故障阻碍了它们的应用。这些故障通常是由于车辆的车载传感器获得的关于其周围环境的信息有限且不可靠。这种“感官”挑战可以通过利用车辆到一切(V2X)通信来克服,这将使自动驾驶车辆能够相互无线通信,附近的基础设施和环境。当通过V2X通信接收的关键信息与典型的传感数据相结合时,自动驾驶汽车可以实现对其周围环境的更准确和全面的了解。实现自动驾驶与V2X通信的完美结合,需要一个智能化、集成化的控制决策系统。然而,如何在集成框架中联合优化车辆控制和通信控制,以实现安全高效的自动驾驶是一个尚未解决的挑战。该系统需要包括两种类型的控制:(1)车辆的自动驾驶控制;(2)车辆网络的通信控制。与传统的控制方法相比,深度强化学习(DRL)可以将环境智能引入互联和自动驾驶汽车。 我的研究计划将提供一个框架,以优化智能和集成控制决策系统的基础上DRL。它将涵盖三个活动:基于DRL的车辆控制,通过V2X增强感知和协作。我将开发DRL算法,该算法可以学习“什么时候通信”,以及如何利用通信信息在理想通信的假设下做出智能车辆控制决策。 具有非理想V2X通信的鲁棒的基于DRL的车辆控制。我将研究通信的好处,以提高控制性能和通信的成本之间的权衡,与“什么和什么时候沟通”的问题上做出最佳决策的目标。此外,我还将开发强大而安全的自动驾驶日间行车线算法,以应对非理想V2X通信带来的不确定性。 基于DRL的车辆和无线电资源联合控制,实现自动驾驶和V2X通信的完美结合。“如何沟通”,即,如何控制稀缺的无线电资源与车辆控制密切相关,因为通信性能将影响驾驶感知。我的目标是考虑更紧密地集成这两种类型的控制,以实现V2X自动驾驶的全局最佳解决方案。 通过上述活动,我的研究计划有望提高自动驾驶汽车的可靠性,从而加速其采用,缓解道路拥堵,降低燃油消耗,并为乘客提供更舒适,更安全的体验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lei, Lei其他文献

An Inferred Ancestral CotA Laccase with Improved Expression and Kinetic Efficiency.
  • DOI:
    10.3390/ijms241310901
  • 发表时间:
    2023-06-30
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Lei, Lei;Zhao, Lijun;Hou, Yiqia;Yue, Chen;Liu, Pulin;Zheng, Yanli;Peng, Wenfang;Yang, Jiangke
  • 通讯作者:
    Yang, Jiangke
Structure Inversion-Bridged Sequential Amino Acid Metabolism Disturbance Potentiates Photodynamic-Evoked Immunotherapy
  • DOI:
    10.1002/adfm.202103394
  • 发表时间:
    2022-02-17
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Lei, Lei;Cai, Shengsheng;Cao, Jun
  • 通讯作者:
    Cao, Jun
Resistance to anti-HER2 therapy associated with the TSC2 nonsynonymous variant c.4349 C > G (p.Pro1450Arg) is reversed by CDK4/6 inhibitor in HER2-positive breast cancer.
  • DOI:
    10.1038/s41523-023-00542-1
  • 发表时间:
    2023-05-09
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Yang, Ziyan;Feng, Jianguo;Jing, Ji;Huang, Yuan;Ye, Wei-Wu;Lei, Lei;Wang, Xiao-Jia;Cao, Wen-Ming
  • 通讯作者:
    Cao, Wen-Ming
Challenges Coexist with Opportunities: Spatial Heterogeneity Expression of PD-L1 in Cancer Therapy.
  • DOI:
    10.1002/advs.202303175
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Wang, Yazhen;Zhou, Yang;Yang, Lianyi;Lei, Lei;He, Bin;Cao, Jun;Gao, Huile
  • 通讯作者:
    Gao, Huile
An evidential view of similarity measure for Atanassov's intuitionistic fuzzy sets
阿塔纳索夫直觉模糊集相似性测度的证据观点

Lei, Lei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lei, Lei', 18)}}的其他基金

Intelligent and Integrated Control of V2X-Enabled Autonomous Vehicles using Deep Reinforcement Learning
使用深度强化学习对支持 V2X 的自动驾驶车辆进行智能集成控制
  • 批准号:
    RGPIN-2021-02839
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated) 行为和精细行为评价体系的构建
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Intelligent Robotic Machining Systems: Integrated Process Planning, Monitoring, and Control
智能机器人加工系统:集成工艺规划、监控和控制
  • 批准号:
    RGPIN-2019-05873
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent Robotic Machining Systems: Integrated Process Planning, Monitoring, and Control
智能机器人加工系统:集成工艺规划、监控和控制
  • 批准号:
    RGPIN-2019-05873
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent and Integrated Control of V2X-Enabled Autonomous Vehicles using Deep Reinforcement Learning
使用深度强化学习对支持 V2X 的自动驾驶车辆进行智能集成控制
  • 批准号:
    RGPIN-2021-02839
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent Robotic Machining Systems: Integrated Process Planning, Monitoring, and Control
智能机器人加工系统:集成工艺规划、监控和控制
  • 批准号:
    RGPIN-2019-05873
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent Robotic Machining Systems: Integrated Process Planning, Monitoring, and Control
智能机器人加工系统:集成工艺规划、监控和控制
  • 批准号:
    RGPIN-2019-05873
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent Robotic Machining Systems: Integrated Process Planning, Monitoring, and Control
智能机器人加工系统:集成工艺规划、监控和控制
  • 批准号:
    DGECR-2019-00229
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Launch Supplement
Integrated distributed intelligent control system for enhancing industiral production safety
集成分布式智能控制系统,提升工业生产安全
  • 批准号:
    46209-2003
  • 财政年份:
    2003
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated distributed intelligent control system for chemical processes.
化工过程集成分布式智能控制系统。
  • 批准号:
    46209-2002
  • 财政年份:
    2002
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated Distributed Intelligent Control system for Process Operation Support
流程运行支持集成分布式智能控制系统
  • 批准号:
    46209-1998
  • 财政年份:
    2001
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
SBIR Phase II: Very Large Scale Integrated (VLSI) Implementations of Neuromorphic Virtual Sensors for Intelligent Diagnostics and Control
SBIR 第二阶段:用于智能诊断和控制的神经形态虚拟传感器的超大规模集成 (VLSI) 实现
  • 批准号:
    9981852
  • 财政年份:
    2000
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了