Building the next generation of computational psycholinguistic models of speech perception

构建下一代语音感知计算心理语言学模型

基本信息

  • 批准号:
    RGPIN-2022-04431
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

How do human beings perceive and understand speech so effortlessly? Our brains give us the illusion that the process is simple, but the often strange errors made by even the most advanced artificial intelligence systems, and the baffling difficulty we have even taking stock of what we hear when we hear an unfamiliar language are clear clues that the process is in fact not easy at all. Incredibly, infants' perception becomes specialized in the language(s) they hear at home well before they can speak: as early as six months, a time when experiments also demonstrate that they recognize and understand the meaning of dozens or hundreds of common words. The cognitive science of speech perception has greatly advanced our understanding of how human speech perception works, and, to a lesser extent, of how the ability develops in infants. Nevertheless, our understanding is still very far from being advanced enough to build "human-like" computer systems that learn and perceive speech, and our current speech technology, tuned on implausibly large quantities of data, behave in many ways very differently from human beings. We seek to take advantage of recent advances in machine learning and speech technology to advance our understanding of (1) learning: what kind of systems can do the work of the infant brain and autonomously learn to decode the speech signals they hear into individual consonant and vowel sounds (currently we know of none)? do these systems end up making the same kinds of misperception errors as human listeners? (2) the early stages of auditory processing: many new speech processing systems appear, at first glance, to behave much more like the human auditory system than previous generations of speech technology, but further experiments with human listeners are needed to assess this, and to understand the implications for our understanding of human auditory processing if it is true; and, (3), how speech sounds are encoded by the brain in our memory for words. The answers to these questions have consequences for our understanding of how humans decode speech, how we learn to do this at an early age, and how we can build artificial intelligence systems that are less fragile, and that are capable of operating in far more of the world's languages.
人类是如何毫不费力地感知和理解语言的?我们的大脑给我们一种错觉,认为这个过程很简单,但即使是最先进的人工智能系统也经常犯奇怪的错误,当我们听到一种不熟悉的语言时,我们甚至难以评估我们所听到的内容,这清楚地表明这个过程实际上并不容易。令人难以置信的是,婴儿的感知能力在他们会说话之前就已经变得专门化了:早在六个月大的时候,实验也表明他们可以识别和理解几十个或几百个常用单词的含义。言语感知的认知科学极大地促进了我们对人类言语感知如何工作的理解,以及在较小程度上,对婴儿的能力如何发展的理解。尽管如此,我们的理解仍然远远没有先进到足以建立“类人”的计算机系统来学习和感知语音,而我们目前的语音技术,基于令人难以置信的大量数据,在许多方面表现得与人类截然不同。我们试图利用机器学习和语音技术的最新进展来推进我们对(1)学习的理解:什么样的系统可以完成婴儿大脑的工作,并自主学习将他们听到的语音信号解码为单独的辅音和元音(目前我们还不知道)?这些系统最终会像人类听众一样产生同样的误解错误吗?(2)听觉处理的早期阶段:乍一看,许多新的语音处理系统比前几代语音技术表现得更像人类听觉系统,但需要对人类听众进行进一步的实验来评估这一点,并了解如果这是真的,对我们理解人类听觉处理的影响;(3)大脑是如何将语音编码到单词记忆中的。这些问题的答案对我们理解人类如何解码语音,我们如何在早期学习这样做,以及我们如何建立不那么脆弱的人工智能系统,并能够在世界上更多的语言中运行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dunbar, Ewan其他文献

A Single-Stage Approach to Learning Phonological Categories: Insights From Inuktitut
  • DOI:
    10.1111/cogs.12008
  • 发表时间:
    2013-03-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Dillon, Brian;Dunbar, Ewan;Idsardi, William
  • 通讯作者:
    Idsardi, William
Addressing the "two interface" problem: Comparatives and superlatives
Mouse tracking as a window into decision making
  • DOI:
    10.3758/s13428-018-01194-x
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Maldonado, Mora;Dunbar, Ewan;Chemla, Emmanuel
  • 通讯作者:
    Chemla, Emmanuel

Dunbar, Ewan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dunbar, Ewan', 18)}}的其他基金

Building the next generation of computational psycholinguistic models of speech perception
构建下一代语音感知计算心理语言学模型
  • 批准号:
    DGECR-2022-00296
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

Carbon emission oriented next generation building energy management system
以碳排放为导向的下一代建筑能源管理系统
  • 批准号:
    24K20901
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Operating Grants
Building Tools to Create Molecular Complexity for Next Generation Drugs
构建为下一代药物创造分子复杂性的工具
  • 批准号:
    IM240100126
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Mid-Career Industry Fellowships
CyberCorps Scholarship for Service: Building the Next Generation Cybersecurity-Ready Workforce
Cyber​​Corps 服务奖学金:建设下一代网络安全就绪的劳动力队伍
  • 批准号:
    2336456
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Building Capacity for Research in Technology-Based Social Entrepreneurship Education for the Next Generation of Engineering Leaders
为下一代工程领导者建设基于技术的社会创业教育研究能力
  • 批准号:
    2321188
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
1/2 Drug Development and Capacity Building: A UCR/CoH-CCC Partnership
1/2 药物开发和能力建设:UCR/CoH-CCC 合作伙伴关系
  • 批准号:
    10762157
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Next-generation ART: Building a global network to create innovative technologies in m ammalian reproductive engineering
下一代 ART:建立全球网络以创造哺乳动物生殖工程创新技术
  • 批准号:
    23K20043
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Leading Research )
2/2 Drug Development and Capacity Building: A UCR/CoH-CCC Partnership
2/2 药物开发和能力建设:UCR/CoH-CCC 合作伙伴关系
  • 批准号:
    10762287
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Building Research Capacity to Study Periodontitis and Associated Systemic Comorbidities in the Caribbean
建设加勒比地区牙周炎及相关系统合并症的研究能力
  • 批准号:
    10664397
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
WASHINGTON UNIVERSITY SCIENCE PARTNERSHIP PROGRAM - BUILDING STEM CAREER READINESS IN K-12 STUDENTS
华盛顿大学科学合作伙伴计划 - 为 K-12 学生培养 STEM 职业准备
  • 批准号:
    10664526
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了