Energy Efficiency and AI-Powered 5G and Beyond Networks
能源效率和人工智能驱动的 5G 及其他网络
基本信息
- 批准号:566589-2021
- 负责人:
- 金额:$ 29.14万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The information and communication technologies (ICT) sector is an energy intensive and growing sector (with an increase of 9% annually). Recently introduced applications of the next-generation radio networks, namely 5G-and-beyond (5GB), have dramatically accelerated the use of ICT services in many economic sectors, creating a unique opportunity to improve our quality of life. Network densification through the massive deployment of antennas capable of offering high-speed services is the key solution to meeting the low latency and high bandwidth requirements of 5GB applications. The design and management of such networks, which are highly complex and dynamic while ensuring a higher level of energy efficiency, pose unprecedented technical challenges. In this project, we will design and optimize a cloud-edge fabric model with respect to new requirements of next-generation radio applications and minimized energy consumption. Based on an artificial intelligence (AI) orchestrator, this model will be able to automatically adapt to the requirements of different classes of users while being eco-responsible. Services will be provided to end users through virtual network slices, which are optimized from end to end. This project will also increase energy efficiency at the hardware level, particularly in radio access, by applying deep learning techniques. The findings of the project will be assessed and quantified on the ENCQOR (Evolution of Networked Services through a Corridor in Quebec and Ontario for Research and Innovation) network, used as a platform for knowledge sharing. This outcome will have the potential to be standardized in OpenRAN (O-RAN) alliance and hence be used worldwide. Ericsson will use this research results to improve the efficiency of their strategic 5G products. The Analysis and Modelling Division (AMD) of the Environment and Climate Change Canada (ECCC) will also benefit from this project to strengthen their GHG modeling solutions for ICT services, and to recommend new environmental policies. Our preliminary estimation shows the project has the potential to reduce approximately 353,525 tons of CO2e per year in Canada, or 3.5 million round-trip flights between Montreal and Toronto.
信息和通信技术 (ICT) 行业是一个能源密集型且不断增长的行业(每年增长 9%)。最近推出的下一代无线网络应用,即 5G 及以上 (5GB),极大地加速了许多经济部门中 ICT 服务的使用,为改善我们的生活质量创造了独特的机会。通过大规模部署能够提供高速服务的天线来实现网络致密化,是满足5GB应用低延迟和高带宽需求的关键解决方案。此类网络的设计和管理高度复杂和动态,同时确保更高水平的能源效率,提出了前所未有的技术挑战。在这个项目中,我们将根据下一代无线电应用的新要求和最小化能耗来设计和优化云边缘结构模型。该模型基于人工智能(AI)编排器,能够自动适应不同类别用户的需求,同时具有生态责任感。服务将通过虚拟网络切片向最终用户提供,虚拟网络切片经过端到端优化。该项目还将通过应用深度学习技术提高硬件层面的能源效率,特别是无线电接入方面。该项目的研究结果将在 ENCQOR(通过魁北克省和安大略省研究与创新走廊的网络服务演进)网络上进行评估和量化,该网络用作知识共享平台。这一成果将有可能在 OpenRAN (O-RAN) 联盟中进行标准化,从而在全球范围内使用。 爱立信将利用这一研究成果来提高其战略性5G产品的效率。加拿大环境与气候变化部 (ECCC) 的分析和建模部门 (AMD) 也将从该项目中受益,以加强其针对 ICT 服务的温室气体建模解决方案,并推荐新的环境政策。我们的初步估计显示,该项目每年有可能在加拿大减少约 353,525 吨二氧化碳当量,或蒙特利尔和多伦多之间的 350 万个往返航班。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cheriet, MohamedM其他文献
Cheriet, MohamedM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
$ 29.14万 - 项目类别:
Launchpad
ViMuSe - a video-based AI music recommendation engine to improve creative efficiency and diversity.
ViMuSe - 基于视频的AI音乐推荐引擎,可提高创作效率和多样性。
- 批准号:
10104871 - 财政年份:2024
- 资助金额:
$ 29.14万 - 项目类别:
Collaborative R&D
Revolutionising Surgery Scheduling: an innovative AI-powered health-tech platform enhancing Operating Room efficiency, with an automated schedule unlocking the potential for an additional 10% or 350K surgeries annually in the UK.
彻底改变%20手术%20调度:%20an%20创新%20AI驱动%20健康科技%20平台%20增强%20操作%20房间%20效率,%20与%20an%20自动化%20调度%20解锁%20%20潜力%20用于%20an%20额外%
- 批准号:
10095646 - 财政年份:2024
- 资助金额:
$ 29.14万 - 项目类别:
Collaborative R&D
A Generative AI-Enabled Design Tool: Analysing problematic projects for improved productivity and cost efficiency
支持人工智能的生成设计工具:分析有问题的项目以提高生产力和成本效率
- 批准号:
10077663 - 财政年份:2023
- 资助金额:
$ 29.14万 - 项目类别:
Collaborative R&D
AI and Hyperspectral Imaging based Non-Destructive inspection for Advancing Peat Use Efficiency in Whisky Production: A Feasibility Study
基于人工智能和高光谱成像的无损检测提高威士忌生产中泥炭的使用效率:可行性研究
- 批准号:
10081207 - 财政年份:2023
- 资助金额:
$ 29.14万 - 项目类别:
Collaborative R&D
An innovative all-in-one fleet operations solution using AI technology to improve efficiency, reduce operating costs by 15% and lower carbon emissions
An%20创新%20一体化%20机队%20运营%20解决方案%20使用%20AI%20技术%20到%20提高%20效率,%20减少%20运营%20成本%20by%2015%%20和%20降低%20碳%20排放
- 批准号:
83001607 - 财政年份:2023
- 资助金额:
$ 29.14万 - 项目类别:
Innovation Loans
An innovative digital transformation platform that leverages AI/ML technology, empowering hotels to enhance their efficiency by 60% and decrease energy consumption by 38%
%20创新%20数字%20转型%20平台%20那%20利用%20人工智能/机器学习%20技术,%20赋能%20酒店%20到%20增强%20他们的%20效率%20by%2060%%20和%20减少%20能源%20消耗%20by%2038%
- 批准号:
10084069 - 财政年份:2023
- 资助金额:
$ 29.14万 - 项目类别:
Collaborative R&D
Overcoming bureaucratic roadblocks with AI for maximum efficiency in energy management
利用人工智能克服官僚障碍,实现能源管理效率最大化
- 批准号:
10076154 - 财政年份:2023
- 资助金额:
$ 29.14万 - 项目类别:
Grant for R&D
AI-enabled Design Optimization for Waste Efficiency (AI-DoWEP)
基于人工智能的垃圾效率设计优化 (AI-DoWEP)
- 批准号:
10080572 - 财政年份:2023
- 资助金额:
$ 29.14万 - 项目类别:
Collaborative R&D
Fertiliser Use Efficiency with AI
利用人工智能提高肥料使用效率
- 批准号:
EP/Y008154/1 - 财政年份:2023
- 资助金额:
$ 29.14万 - 项目类别:
Research Grant














{{item.name}}会员




