Investigating Grassland-Wetland Ecosystems and the Impacts of Environmental Change using Remote Sensing Big Data

利用遥感大数据研究草原湿地生态系统及环境变化的影响

基本信息

  • 批准号:
    RGPIN-2022-03679
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Grasslands and wetlands are valuable ecosystems that have essential ecological and economic functions. Over the past few decades, environmental change induced by climate change and human activities has greatly affected grasslands and wetlands from the global to the local level. Many studies have investigated grasslands and wetlands for understanding ecosystem loss and degradation. However, few have investigated grasslands and wetlands cohesively. They often coexist in a landscape, and grasslands are natural buffers for wetlands. Transitions and conversions between grasslands and wetlands are also sensitive to climate change. Such grassland-wetland ecosystems are critical habitats for many plant and animal species and provide essential ecosystem services for human well-being. Environmental disturbances (e.g., droughts, invasion of non-native species, and urban development) can considerably influence such mixed ecosystems and cause degradation or irreversible loss of ecosystem services, which have not been well investigated in previous studies. Remote sensing is a powerful tool for monitoring ecosystems, especially for grasslands-wetlands that have substantial spatio-temporal variations. Remote sensing big data, which include multi-type images (e.g., optical, LiDAR, Radar, and thermal) acquired by different platforms (e.g., satellites, airplanes, and drones), are capable of capturing ecosystem features from different perspectives and at different scales, and thus providing valuable data and insights for analyzing ecosystem loss and degradation. Such big data have become more widely available in recent years, offering unprecedented opportunities for ecosystem monitoring. However, utilizations of these big data, such as the fusion of multi-type and multi-platform images, remains challenging. The long-term goal of this research is to investigate the loss and degradation of grasslands-wetlands under the environmental change using remote sensing big data and to understand underlying ecological mechanisms for supporting ecosystem management. While working with collaborators from different sectors, I will pursue the following short-term objectives over the next five years: 1) investigating ecological features and processes in grasslands-wetlands using remote sensing big data and advanced analytical models; 2) monitoring the loss and degradation of selected grassland-wetland ecosystems using a long time series of images; and 3) evaluating the impacts of environmental disturbances (e.g., droughts, wildfires, and human activities) on grasslands-wetlands and assessing ecosystem resilience. It is expected that this research will improve our understanding of ecological processes and underlying mechanisms in grasslands-wetlands together with the impacts of environmental change. The exploration of remote sensing big data and the development of advanced analytical methods will also promote the adoption of this big data technology in ecosystem monitoring.
草地和湿地是具有重要生态和经济功能的宝贵生态系统。在过去几十年中,气候变化和人类活动引起的环境变化极大地影响了从全球到地方一级的草原和湿地。许多研究调查了草原和湿地,以了解生态系统的损失和退化。然而,很少有人对草原和湿地进行过研究。它们通常在一个景观中共存,草地是湿地的天然缓冲区。草原和湿地之间的过渡和转换也对气候变化敏感。这种草地-湿地生态系统是许多动植物物种的重要生境,为人类福祉提供了必不可少的生态系统服务。环境干扰(例如,干旱、非本地物种的入侵和城市发展)可对这种混合生态系统产生重大影响,并造成生态系统服务的退化或不可逆转的损失,而这在以往的研究中尚未得到充分的调查。遥感是监测生态系统的一个有力工具,特别是对时空变化很大的草地-湿地。遥感大数据,其中包括多类型的图像(例如,光学、LiDAR、雷达和热)由不同平台获取(例如,卫星、飞机和无人机等能够从不同角度和不同尺度捕捉生态系统特征,从而为分析生态系统损失和退化提供有价值的数据和见解。近年来,这些大数据变得越来越广泛,为生态系统监测提供了前所未有的机会。然而,这些大数据的利用,例如多类型和多平台图像的融合,仍然具有挑战性。本研究的长期目标是利用遥感大数据调查环境变化下草地-湿地的损失和退化,并了解支持生态系统管理的潜在生态机制。在与来自不同部门的合作者合作的同时,我将在未来五年内实现以下短期目标:1)利用遥感大数据和先进的分析模型研究草地-湿地的生态特征和过程; 2)使用长时间序列图像监测选定的草地-湿地生态系统的损失和退化;以及3)评估环境干扰的影响(例如,干旱、野火和人类活动)对草地-湿地的影响,并评估生态系统的复原力。希望本研究能增进我们对草地-湿地生态过程及其机制的了解,以及环境变迁的影响。对遥感大数据的探索和先进分析方法的发展,也将推动这种大数据技术在生态系统监测中的采用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lu, Bing其他文献

Predictive Value of the Respiratory Variation in Inferior Vena Cava Diameter for Ventilated Children With Septic Shock.
  • DOI:
    10.3389/fped.2022.895651
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Xiong, Zihong;Zhang, Guoying;Zhou, Qin;Lu, Bing;Zheng, Xuemei;Wu, Mengjun;Qu, Yi
  • 通讯作者:
    Qu, Yi
Two-stage homogenization of Al-Zn-Mg-Cu-Zr alloy processed by twin-roll casting to improve L12 Al3Zr precipitation, recrystallization resistance, and performance
  • DOI:
    10.1016/j.jallcom.2021.160789
  • 发表时间:
    2021-11-15
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Li, Yong;Lu, Bing;Wang, Zhaodong
  • 通讯作者:
    Wang, Zhaodong
LncRNA NEAT1 Sponges MiRNA-148a-3p to Suppress Choroidal Neovascularization and M2 macrophage polarization
LncRNA NEAT1 海绵 MiRNA-148a-3p 抑制脉络膜新生血管和 M2 巨噬细胞极化
  • DOI:
    10.1016/j.molimm.2020.08.008
  • 发表时间:
    2020-11-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Zhang, Pengfei;Lu, Bing;Mei, Lixin
  • 通讯作者:
    Mei, Lixin
MiR-7-5p/KLF4 signaling inhibits stemness and radioresistance in colorectal cancer.
miR-7-5p/klf4信号传导抑制结直肠癌的干性和放射性。
  • DOI:
    10.1038/s41420-023-01339-8
  • 发表时间:
    2023-02-02
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Shang, Yuanyuan;Zhu, Zhe;Zhang, Yuanyuan;Ji, Fang;Zhu, Lian;Liu, Mengcheng;Deng, Yewei;Lv, Guifen;Li, Dan;Zhou, Zhuqing;Lu, Bing;Fu, Chuan-gang
  • 通讯作者:
    Fu, Chuan-gang
Wideband Doppler frequency shift measurement and direction ambiguity resolution using optical frequency shift and optical heterodyning
使用光学频移和光学外差进行宽带多普勒频移测量和方向模糊度解析
  • DOI:
    10.1364/ol.40.002321
  • 发表时间:
    2015-05-15
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Lu, Bing;Pan, Wei;Luo, Bin
  • 通讯作者:
    Luo, Bin

Lu, Bing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lu, Bing', 18)}}的其他基金

Investigating Grassland-Wetland Ecosystems and the Impacts of Environmental Change using Remote Sensing Big Data
利用遥感大数据研究草原湿地生态系统及环境变化的影响
  • 批准号:
    DGECR-2022-00144
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

Predicting effects of interannual variability in climate and drought on plant community outcomes, resilience, and soil carbon using temporally replicated grassland reconstructions
使用临时复制的草地重建来预测气候和干旱的年际变化对植物群落结果、恢复力和土壤碳的影响
  • 批准号:
    2343738
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
LTREB Renewal: Long-term ecosystem responses to directional changes in precipitation amount and variability in an arid grassland
LTREB 更新:干旱草原中降水量和变异性方向变化的长期生态系统响应
  • 批准号:
    2326482
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
Measuring resilience and early warning signals of critical slowdown in forest and grassland habitats using time-series satellite data
使用时间序列卫星数据测量森林和草原栖息地严重放缓的恢复力和预警信号
  • 批准号:
    2880900
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Studentship
Grassland Modelling for Improved Utilisation
草地建模以提高利用率
  • 批准号:
    10027271
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Collaborative R&D
Restoration of grassland ecosystem through an ecological stoichiometric approach using grazing
通过放牧的生态化学计量方法恢复草原生态系统
  • 批准号:
    23H03582
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Restoring degraded Kenyan grassland soils
恢复退化的肯尼亚草原土壤
  • 批准号:
    2886372
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Studentship
Development of a system using AI Image analysis for vegetation survey in grassland.
开发利用人工智能图像分析进行草原植被调查的系统。
  • 批准号:
    23K05197
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conservation of diverse grassland from a view of the physiological ecology of grazing animals
从放牧动物生理生态角度保护多样化草原
  • 批准号:
    23K05271
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regional carbon dynamics in the agroecosystems utilizing traditional semi-natural grassland
利用传统半天然草地的农业生态系统的区域碳动态
  • 批准号:
    22H02472
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Impact of prescribed fire and grazing management on grassland plant and songbird communities
规定的火灾和放牧管理对草原植物和鸣禽群落的影响
  • 批准号:
    571075-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了