Supply Chain Analytics under Disruptive Uncertainty

破坏性不确定性下的供应链分析

基本信息

  • 批准号:
    RGPIN-2021-03264
  • 负责人:
  • 金额:
    $ 2.26万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The impact of COVID global pandemic has proven to be highly disruptive to the supply chain across multiple industries. For example, in the retail context, retailers experienced the impact of panic buying in multiple categories of products. In the aerospace industry, operations halts and sudden declines in the demand have generated shocks and disruptions in production and operations. Critical parts and components faced significant and unpredictable delays. The processes and operations in supply chains which are made to achieve efficiency at a low cost have become increasingly complex, and thus are often prone to highly disruptive scenarios. In such situations, the tools which rely mainly on a large amount of historical data commonly used in decision making processes in supply chains cannot generally be adapted to deal with sudden shifts in the environments they operate in. The unique aspects of this research program are its practical relevance to the highly challenging pandemic and disruption situations, and integration of operations research and machine learning techniques to enhance analytics in the context where quality and amount of data are insufficient. Our research program leverages the predictive and prescriptive analytics approaches to enhance the robustness and resilience of supply chains through two important countermeasures, i.e., (i) pre-disruption risk mitigation plans to proactively prepare the supply chain to be sufficiently robust and resilient prior to the disruptions, and (ii) post-disruption recovery actions to promptly detect, assess and react to the situations at hand. We will develop prescriptive approaches to determine risk mitigation plans at the strategic, tactical and operational levels of the supply chains, more specifically, in the areas of robust supply chain network design, resilience production and distribution planning, as well as robust transportation planning. To allow the decision maker to deal with a disruption after it occurs, we will focus our effort on three important applications, namely demand anomaly detection and online replenishment in retails, dynamic scheduling in manufacturing and production planning, and real-time vehicle dispatching and delivery. The developments of the analytics tools will be based on multi-stage stochastic and robust optimization methods, advanced decomposition methods, heuristics and reinforcement learning algorithms for the prescriptive capabilities, which are enhanced through statistical and machine learning methods used to generate adversarial (disruptive) scenarios, reduce dimensionality, and construct scenario-wise uncertainty representations (ambiguity set). The majority of this research program will be done in collaboration with our retail and industrial partners. This research program strategically complements existing research under our Canada Research Chair in Supply Chain Analytics as well as the large-scale industrial collaboration under the SCALE.AI initiative.
新型冠状病毒全球大流行的影响已被证明对多个行业的供应链具有高度破坏性。例如,在零售方面,零售商经历了多类产品的恐慌性购买的影响。在航空航天业,业务中断和需求突然下降对生产和业务造成冲击和中断。关键零部件面临重大和不可预测的延误。供应链中旨在以低成本实现效率的流程和操作变得越来越复杂,因此往往容易出现高度破坏性的情况。在这种情况下,主要依赖于供应链决策过程中常用的大量历史数据的工具通常无法适应其运营环境的突然变化。该研究计划的独特之处在于其与极具挑战性的大流行和中断情况的实际相关性,以及整合运营研究和机器学习技术,以在数据质量和数量不足的情况下加强分析。我们的研究计划利用预测性和规范性分析方法,通过两个重要的对策来增强供应链的稳健性和弹性,即:(i)中断前的风险缓解计划,以主动准备供应链,使其在中断前具有足够的稳健性和弹性,以及(ii)中断后的恢复行动,以迅速发现、评估和应对手头的情况。我们将制定规范性方法,以确定供应链战略、战术和运营层面的风险缓解计划,具体而言,包括稳健的供应链网络设计、弹性生产和分销规划以及稳健的运输规划。为了使决策者能够在中断发生后处理中断,我们将集中精力在三个重要的应用程序上,即零售商的需求异常检测和在线补货,制造和生产计划中的动态调度,以及实时车辆调度和交付。分析工具的开发将基于多阶段随机和稳健的优化方法,高级分解方法,用于规定性功能的逻辑学和强化学习算法,通过用于生成对抗性(破坏性)场景的统计和机器学习方法来增强,降低维度,并构建智能不确定性表示(模糊集)。这项研究计划的大部分将与我们的零售和工业合作伙伴合作完成。该研究计划战略性地补充了我们加拿大供应链分析研究主席的现有研究以及SCALE.AI计划下的大规模工业合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adulyasak, Yossiri其他文献

Robust facility location under demand uncertainty and facility disruptions
The Robust Vehicle Routing Problem with Time Window Assignments
  • DOI:
    10.1287/trsc.2020.1013
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Hoogeboom, Maaike;Adulyasak, Yossiri;Jaillet, Patrick
  • 通讯作者:
    Jaillet, Patrick
Using AI to detect panic buying and improve products distribution amid pandemic.
  • DOI:
    10.1007/s00146-023-01654-9
  • 发表时间:
    2023-04-15
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Adulyasak, Yossiri;Benomar, Omar;Chaouachi, Ahmed;Cohen, Maxime C;Khern-Am-Nuai, Warut
  • 通讯作者:
    Khern-Am-Nuai, Warut
Drone routing with energy function: Formulation and exact algorithm
  • DOI:
    10.1016/j.trb.2020.06.011
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Cheng, Chun;Adulyasak, Yossiri;Rousseau, Louis-Martin
  • 通讯作者:
    Rousseau, Louis-Martin
Material Requirements Planning Under Demand Uncertainty Using Stochastic Optimization
  • DOI:
    10.1111/poms.13277
  • 发表时间:
    2020-11-07
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Thevenin, Simon;Adulyasak, Yossiri;Cordeau, Jean-Francois
  • 通讯作者:
    Cordeau, Jean-Francois

Adulyasak, Yossiri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adulyasak, Yossiri', 18)}}的其他基金

Supply Chain Analytics
供应链分析
  • 批准号:
    CRC-2017-00346
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Canada Research Chairs
Supply Chain Analytics
供应链分析
  • 批准号:
    CRC-2017-00346
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Canada Research Chairs
Supply Chain Analytics under Disruptive Uncertainty
破坏性不确定性下的供应链分析
  • 批准号:
    RGPIN-2021-03264
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Supply chain optimization under uncertainty
不确定性下的供应链优化
  • 批准号:
    RGPIN-2016-05822
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Supply Chain Analytics
供应链分析
  • 批准号:
    1000232018-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Canada Research Chairs
Supply Chain Analytics
供应链分析
  • 批准号:
    1000232018-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Canada Research Chairs
Supply chain optimization under uncertainty
不确定性下的供应链优化
  • 批准号:
    RGPIN-2016-05822
  • 财政年份:
    2019
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Supply chain optimization under uncertainty
不确定性下的供应链优化
  • 批准号:
    RGPIN-2016-05822
  • 财政年份:
    2018
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Supply Chain Analytics
供应链分析
  • 批准号:
    1000232018-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Canada Research Chairs
Supply chain optimization under uncertainty
不确定性下的供应链优化
  • 批准号:
    RGPIN-2016-05822
  • 财政年份:
    2017
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Supply Chain Collaboration in addressing Grand Challenges: Socio-Technical Perspective
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
在大数据和复杂模型背景下探究更有效的Markov chain Monte Carlo算法
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
构建互穿网络结构中系带分子(tie chain)和缠结网络协同提升全聚合物太阳能电池力学与光伏性能
  • 批准号:
    52003269
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于Service Chain的数据中心网络资源调度问题研究
  • 批准号:
    61772235
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

Supply Chain Analytics
供应链分析
  • 批准号:
    CRC-2017-00346
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Canada Research Chairs
Humanitarian Supply Chain Analytics
人道主义供应链分析
  • 批准号:
    CRC-2020-00229
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Canada Research Chairs
On the role of data analytics and fuzzy sets theory in healthcare supply chain management.
关于数据分析和模糊集理论在医疗保健供应链管理中的作用。
  • 批准号:
    RGPIN-2020-06214
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Analytics tool to support the UK construction sector to measure and reduce scope 3 emissions in their supply chain
支持英国建筑行业测量和减少供应链中范围 3 排放的分析工具
  • 批准号:
    10046866
  • 财政年份:
    2022
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Grant for R&D
On the role of data analytics and fuzzy sets theory in healthcare supply chain management.
关于数据分析和模糊集理论在医疗保健供应链管理中的作用。
  • 批准号:
    RGPIN-2020-06214
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Supply Chain Analytics
供应链分析
  • 批准号:
    CRC-2017-00346
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Canada Research Chairs
Supply Chain Analytics under Disruptive Uncertainty
破坏性不确定性下的供应链分析
  • 批准号:
    RGPIN-2021-03264
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Discovery Grants Program - Individual
Humanitarian Supply Chain Analytics
人道主义供应链分析
  • 批准号:
    CRC-2020-00229
  • 财政年份:
    2021
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Canada Research Chairs
Project Perfect Apple - using AI and automated analytics to grant Supply Chain superpowers.
Project Perfect Apple - 使用人工智能和自动化分析赋予供应链超能力。
  • 批准号:
    80093
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Collaborative R&D
Supply Chain Analytics
供应链分析
  • 批准号:
    1000232018-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 2.26万
  • 项目类别:
    Canada Research Chairs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了