Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
基本信息
- 批准号:RGPIN-2022-04570
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Decades of neoliberal politics in North America centered on austerity and privatization have led to public sector agencies increasingly looking towards predictive algorithms and models built with artificial intelligence and machine learning technologies as a means to reduce costs, improve decision-making processes as well as provide greater efficiencies in public policy and social services delivery. Algorithms in the public sector have generally been adopted in the form of risk assessment algorithms with their primary purpose being the preemptive estimation of 'risk'. This has centered resources towards risk management based on individual client characteristics while driving attention away from structural and societal problems. Over the past two decades, several high-stakes decision-making domains such as the child-welfare system (CWS), criminal justice system, education, and healthcare have increasingly turned towards risk assessment algorithms. For instance, within CWS, there is growing public and media pressure because of the harm caused to children (especially minorities and Indigenous children given Canada's history of residential schools) who are removed from the care of their parents as well as where the system failed to remove and protect a child. However, the public sector poses its own challenges with respect to technical (quality of data), social and cultural (workers' interaction with algorithms), theoretical (what is risk assessment?), and societal (impact of algorithms on communities) implications of algorithmic decision-making. This research program will combine concepts from human-computer interaction (HCI), machine learning (ML) and participatory design (PD) to engage in the design and development of human-centered algorithms for high stakes decision making in the public sector. Particularly, the lens chosen will be through integrating participatory design strategies of relevant stakeholders with machine learning models that leverage historical, unstructured narratives to develop a Participatory Machine Learning (PML) framework. Further, this framework will advance the development of strength-based, holistic assessments that aim to produce positive outcomes for people as opposed to the current norm of narrow, deficit-based risk assessments that measure risk to the government. Finally, the PML framework will be validated in the public sector in two crucial areas of Canadian importance - child welfare and criminal justice. Through graduate student-led projects, this research program will advance insights into algorithmic fairness, bias and transparency issues in public services from a socio-technical perspective in order to train the next generation of researchers engaged in developing computational technologies for the social good. Ultimately the insights gleaned from this research program will be integrated into public sector programs for the purposes of better, high stakes algorithmic decision-making.
数十年来,北美以紧缩和私有化为中心的新自由主义政治导致公共部门机构越来越多地将人工智能和机器学习技术构建的预测算法和模型作为降低成本、改善决策过程以及提高公共政策和社会服务效率的手段。公共部门的算法通常以风险评估算法的形式采用,其主要目的是对“风险”进行先发制人的估计。这使资源集中在基于个别客户特征的风险管理上,同时将注意力从结构和社会问题上转移开。在过去的二十年里,一些高风险的决策领域,如儿童福利系统(CWS),刑事司法系统,教育和医疗保健越来越多地转向风险评估算法。例如,在加拿大妇女服务中心内部,公众和媒体的压力越来越大,因为儿童(特别是少数民族和土著儿童,因为加拿大有寄宿学校的历史)被从父母的照顾中带走,以及该系统未能带走和保护儿童。然而,公共部门在技术(数据质量)、社会和文化(工人与算法的互动)、理论(什么是风险评估?)以及算法决策的社会影响(算法对社区的影响)。该研究计划将结合联合收割机的概念,从人机交互(HCI),机器学习(ML)和参与式设计(PD)从事设计和开发以人为本的算法,在公共部门的高风险决策。特别是,选择的透镜将通过整合相关利益相关者的参与式设计策略与机器学习模型,利用历史,非结构化的叙述来开发一个渐进式机器学习(PML)框架。此外,这一框架将推动基于实力的全面评估的发展,旨在为人们带来积极的结果,而不是目前衡量政府风险的狭隘的、基于赤字的风险评估。最后,将在加拿大两个重要的关键领域-儿童福利和刑事司法-在公共部门验证PML框架。通过研究生主导的项目,该研究计划将从社会技术的角度深入了解公共服务中的算法公平性,偏见和透明度问题,以培养下一代从事开发计算技术的研究人员。最终,从这项研究计划中收集到的见解将被整合到公共部门的计划中,以实现更好的高风险算法决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guha, Shion其他文献
Missing Photos, Suffering Withdrawal, or Finding Freedom? How Experiences of Social Media Non-Use Influence the Likelihood of Reversion
- DOI:
10.1177/2056305115614851 - 发表时间:
2015-07-01 - 期刊:
- 影响因子:5.2
- 作者:
Baumer, Eric P. S.;Guha, Shion;Gay, Geri K. - 通讯作者:
Gay, Geri K.
Cross-campus collaboration: A scientometric and network case study of publication activity across two campuses of a single institution
- DOI:
10.1002/asi.22807 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:0
- 作者:
Birnholtz, Jeremy;Guha, Shion;Heller, Caren - 通讯作者:
Heller, Caren
The Relationships between Data, Power, and Justice in CSCW Research
CSCW 研究中数据、权力和正义之间的关系
- DOI:
10.1145/3311957.3358609 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Chancellor, Stevie;Guha, Shion;Kaye, Jofish;King, Jen;Salehi, Niloufar;Schoenebeck, Sarita;Stowell, Elizabeth - 通讯作者:
Stowell, Elizabeth
Real-world clinical outcomes and treatment patterns in patients with MDD treated with vortioxetine: a retrospective study.
- DOI:
10.1186/s12888-023-05439-8 - 发表时间:
2023-12-13 - 期刊:
- 影响因子:4.4
- 作者:
McDaniel, Brandon T.;Cornet, Victor;Carroll, Jeanne;Chrones, Lambros;Chudzik, Joseph;Cochran, Jeanette;Guha, Shion;Lawrence, Debra F.;McCue, Maggie;Sarkey, Sara;Lorenz, Betty;Fawver, Jay - 通讯作者:
Fawver, Jay
The impact of exploring computer science in Wisconsin: where disadvantage is an advantage
在威斯康星州探索计算机科学的影响:劣势即优势
- DOI:
10.1145/3197091.3197140 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Bort, Heather;Guha, Shion;Brylow, Dennis - 通讯作者:
Brylow, Dennis
Guha, Shion的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guha, Shion', 18)}}的其他基金
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
- 批准号:
DGECR-2022-00401 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
In-Touch: Implementation of a person-centered palliative care iNtervention To imprOve comfort, QUality of Life and social engagement of people with advanced dementia in Care Homes
In-Touch:实施以人为本的姑息治疗干预措施,以提高护理院中晚期痴呆症患者的舒适度、生活质量和社会参与度
- 批准号:
10102690 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
EU-Funded
REU Site: The DUB REU Program for Human-Centered Computing Research
REU 网站:DUB REU 以人为中心的计算研究计划
- 批准号:
2348926 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Place-Based, Human-Centered Networks to Enhance Community Resilience and Equity
以地方为基础、以人为本的网络,以增强社区的弹性和公平性
- 批准号:
2242719 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
In-Touch: Implementation of a person-centered palliative care iNtervention To imprOve comfort, QUality of Life and social engagement of people with advanced dementia in Care Homes
In-Touch:实施以人为本的姑息治疗干预措施,以提高护理院中晚期痴呆症患者的舒适度、生活质量和社会参与度
- 批准号:
10108568 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
EU-Funded
People-Centered Tsunami early Warning for the INdian coastlines (PCTWIN)
印度海岸线以人为本的海啸预警 (PCTWIN)
- 批准号:
NE/Z503496/1 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Research Grant
CAREER: Divergent Transfer Trajectories in Computer Science: A Mixed Methods and Person-Centered Exploration of (In)Equity and Community College Transfer Pathways
职业:计算机科学中的不同转学轨迹:对(内)公平和社区大学转学途径的混合方法和以人为本的探索
- 批准号:
2336193 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant
REU Site: Human-Centered Computing for Social Good
REU 网站:以人为本的计算,造福社会
- 批准号:
2349070 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
A human-centered modeling approach to simulate best management practices and behaviors under uncertainty to meet water quality guidelines
以人为本的建模方法,用于模拟不确定情况下的最佳管理实践和行为,以满足水质准则
- 批准号:
2342309 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant