Game Values, Temperature, and Enumeration of Placement Games
放置游戏的游戏值、温度和枚举
基本信息
- 批准号:RGPIN-2022-04273
- 负责人:
- 金额:$ 1.38万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Combinatorial games are 2-player, perfect information games like Chess or Go. Combinatorial game theory is the study of who wins these games and how. Two key concepts used are game values, which indicate how large an advantage one player has over the other, and game temperature, which roughly tells us how urgent it is to make a certain move and is used in game playing programs to find good moves. In many combinatorial games pieces are placed on a board without moving or removing them later, and these are called placement games. We will be looking at a subclass of placement games known as strong placement (SP-) games. These games have additional properties that other games do not have, such as recently proven connections to other mathematical objects and the structure of their game tree, which can be used in their analysis. Several SP-games have been studied previously, taking advantage of their structure, but, for most, no winning strategy is known. Using the properties of SP-games, which allow for additional analysis tools, we will be investigating three questions of importance in combinatorial game theory: (1) What game values can possibly appear in SP-games? (2) What is the maximum possible temperature of an SP-game? (3) How many positions are there? Work on these three questions will impact combinatorial game theory in a variety of ways. Restricting game values for strong placement games in general will lead to improved algorithms for the analysis of such games, making it easier to determine a winning strategy. Game values and temperatures are intrinsically linked, so results for the former can also inform techniques for bounding the latter. Restricting the possible maximum temperature based on properties of the game itself or the game board will improve the algorithms used by game playing programs, and thus decrease the computational time needed to find good moves. Finally, enumerating the number of positions in a game helps to determine the computational cost of analyzing these games and will inform whether it is computationally more efficient to assume non-alternating play for a specific game. Applying results from all three areas of interest will lead to computer game playing programs becoming stronger players, and thus these programs may even introduce new strategies not previously considered.
组合游戏是两人的完美信息游戏,如国际象棋或围棋。组合博弈论研究谁赢得这些博弈以及如何获胜。使用的两个关键概念是游戏值,它表明一个玩家相对于另一玩家有多大的优势,以及游戏温度,它大致告诉我们采取某种行动的紧急程度,并在游戏程序中用于寻找好的行动。在许多组合游戏中,棋子被放置在棋盘上,之后不会移动或移除它们,这些被称为放置游戏。我们将研究放置游戏的一个子类,称为强放置游戏 (SP-)。这些游戏具有其他游戏所没有的附加属性,例如最近证明的与其他数学对象的联系及其游戏树的结构,可用于分析。之前已经利用其结构研究了几种 SP 游戏,但对于大多数游戏来说,没有已知的获胜策略。利用 SP 博弈的特性(允许使用额外的分析工具),我们将研究组合博弈论中的三个重要问题:(1)SP 博弈中可能出现哪些博弈值? (2) SP游戏的最高可能温度是多少? (3)有多少个职位?对这三个问题的研究将以多种方式影响组合博弈论。一般来说,限制强排名游戏的游戏价值将导致分析此类游戏的算法得到改进,从而更容易确定获胜策略。游戏值和温度有着内在的联系,因此前者的结果也可以为限制后者的技术提供信息。根据游戏本身或游戏板的属性限制可能的最高温度将改进游戏程序使用的算法,从而减少找到好动作所需的计算时间。最后,枚举游戏中的位置数量有助于确定分析这些游戏的计算成本,并将告知对于特定游戏假设非交替游戏在计算上是否更有效。应用所有三个感兴趣领域的结果将导致计算机游戏程序成为更强大的玩家,因此这些程序甚至可能引入以前未考虑过的新策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huntemann, Svenja其他文献
Huntemann, Svenja的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huntemann, Svenja', 18)}}的其他基金
Game Values, Temperature, and Enumeration of Placement Games
放置游戏的游戏值、温度和枚举
- 批准号:
DGECR-2022-00452 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Launch Supplement
Combinatorial Games from Simplicial Complexes and Designs
来自单纯复形和设计的组合游戏
- 批准号:
516619-2018 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Postdoctoral Fellowships
Combinatorial Games from Simplicial Complexes and Designs
来自单纯复形和设计的组合游戏
- 批准号:
516619-2018 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Postdoctoral Fellowships
The Algebra of Placement Games
放置游戏的代数
- 批准号:
459150-2014 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The Algebra of Placement Games
放置游戏的代数
- 批准号:
459150-2014 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The Algebra of Placement Games
放置游戏的代数
- 批准号:
459150-2014 - 财政年份:2014
- 资助金额:
$ 1.38万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Further investigations into the Main Conjecture on MDS Codes
对MDS代码主要猜想的进一步探讨
- 批准号:
433035-2012 - 财政年份:2012
- 资助金额:
$ 1.38万 - 项目类别:
University Undergraduate Student Research Awards
On the main conjecture regarding MDS codes
关于MDS代码的主要猜想
- 批准号:
416967-2011 - 财政年份:2011
- 资助金额:
$ 1.38万 - 项目类别:
University Undergraduate Student Research Awards
相似海外基金
Building Desirable and Resilient Public Media Futures: Establishing the Centre for Public Values, Technology & Society
建设理想且有弹性的公共媒体未来:建立公共价值观和技术中心
- 批准号:
MR/X033651/1 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Fellowship
CRII: SHF: Theoretical Foundations of Verifying Function Values and Reducing Annotation Overhead in Automatic Deductive Verification
CRII:SHF:自动演绎验证中验证函数值和减少注释开销的理论基础
- 批准号:
2348334 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
Restoring & future-proofing the biocultural values of endangered seagrasses
正在恢复
- 批准号:
LP220200950 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Linkage Projects
Investigating the archaeological values of Marra cultural heritage sites
调查马拉文化遗产地的考古价值
- 批准号:
LP220100143 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Linkage Projects
若者支援/Youth Work/Informal教育のCore Values共有化の方法をめぐる国際共同研究
国际联合研究共享青年支持/青年工作/非正式教育核心价值观的方法
- 批准号:
24K00379 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
U.S. participation in the 8th wave of the World Values Survey
美国参与第八波世界价值观调查
- 批准号:
2331175 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
DEVAL - Democratic Values and Authoritarian Legitimacy
DEVAL - 民主价值观和威权合法性
- 批准号:
EP/Y036832/1 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Research Grant
Multiple Zeta Values in Function Fields using Motivic Framework
使用 Motivic 框架的函数域中的多个 Zeta 值
- 批准号:
2302399 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
Development of the assessment method to quantify the physical coordination ability of children: through the evaluation using muscle coherence values.
量化儿童身体协调能力的评估方法的开发:通过肌肉一致性值的评估。
- 批准号:
23K10740 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: IIS Core: Small: World Values of Conversational AI and the Consequences for Human-AI Interaction
协作研究:IIS 核心:小:对话式 AI 的世界价值以及人机交互的后果
- 批准号:
2230466 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant














{{item.name}}会员




