Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
基本信息
- 批准号:RGPIN-2019-05899
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research program lies in the broad area of mathematical physics. In particular, it concerns geometric structures that carry physical significance --- either originate from physical considerations, or have potential applications in physics. The descriptions of physical systems, both classical and quantum systems, often require geometrical shapes with certain special properties. Mathematically, certain properties can be captured also with extra structures on, or symmetries of, these shapes, or relations among shapes of different types. It is very interesting when two different mathematical descriptions produce the same predictions from physical considerations, in which case, the two mathematical descriptions are said to exhibit duality. Dualities are extremely useful and important, since they often relate quite distinct areas of mathematics and turn complicated problems from one into much simpler ones in another. Mirror symmetry that relates symplectic geometry on the one side to complex geometry on the other is one of the more famous examples. Mathematical justifications of these dualities are thus of great importance. Generalized geometry a la Hitchin as well as Born geometry are proposed partly to help understand certain dualities mathematically. Constructions involving stable and twisted vector bundles, such as their derived categories and moduli spaces; as well as the quantum topology arise from considerations of maps from Riemann surfaces into relevant targets such as symplectic manifolds provide the geometric frameworks for such understanding. These are often complicated constructions, and working them out on explicit examples such as Lie groups and homogeneous spaces helps in uncovering possible general structures. More specifically, my research program concerns generalized geometry, Lie theory, stable bundles, moduli spaces of them, quantum topology and concrete dynamic systems.
我的研究计划是在数学物理的广阔领域。特别是,它涉及具有物理意义的几何结构---要么源于物理考虑,要么在物理学中有潜在的应用。物理系统的描述,包括经典和量子系统,通常需要具有某些特殊性质的几何形状。在数学上,某些属性也可以通过这些形状上的额外结构或这些形状的对称性或不同类型的形状之间的关系来捕获。当两个不同的数学描述从物理考虑产生相同的预测时,这是非常有趣的,在这种情况下,这两个数学描述被称为表现出对偶性。对偶性是非常有用和重要的,因为它们经常涉及数学中非常不同的领域,并将一个复杂的问题转化为另一个简单得多的问题。镜像对称是一个比较著名的例子,它将辛几何与复几何联系在一起。因此,这些对偶性的数学证明是非常重要的。广义几何拉希钦以及玻恩几何提出部分帮助理解某些对偶数学。涉及稳定和扭曲的向量丛的构造,如它们的导出范畴和模空间;以及量子拓扑,从黎曼曲面到相关目标(如辛流形)的映射的考虑中产生,为这种理解提供了几何框架。这些通常是复杂的结构,在李群和齐性空间等明确的例子上进行计算有助于揭示可能的一般结构。更具体地说,我的研究计划涉及广义几何,李理论,稳定丛,它们的模空间,量子拓扑和具体的动力系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hu, Shengda其他文献
Hypoxic Preconditioning Increases Survival of Cardiac Progenitor Cells via the Pim-1 Kinase-Mediated Anti-Apoptotic Effect
- DOI:
10.1253/circj.cj-13-0841 - 发表时间:
2014-03-01 - 期刊:
- 影响因子:3.3
- 作者:
Hu, Shengda;Yan, Gaoliang;Ma, Genshan - 通讯作者:
Ma, Genshan
The Accumulation of the Glycoxidation Product Nε-carboxymethyllysine in Cardiac Tissues with Age, Diabetes Mellitus and Coronary Heart Disease
- DOI:
10.1620/tjem.230.25 - 发表时间:
2013-05-01 - 期刊:
- 影响因子:2.2
- 作者:
Hu, Shengda;He, Wei;Ma, Genshan - 通讯作者:
Ma, Genshan
Regularization of the Kepler Problem on the Three-sphere
- DOI:
10.4153/cjm-2012-039-9 - 发表时间:
2014-08-01 - 期刊:
- 影响因子:0.7
- 作者:
Hu, Shengda;Santoprete, Manuele - 通讯作者:
Santoprete, Manuele
Biodistribution and Elimination Study of Fluorine-18 Labeled N-epsilon-Carboxymethyl-Lysine following Intragastric and Intravenous Administration
氟18标记的N-ε-羧甲基-赖氨酸胃内和静脉给药后的生物分布和消除研究
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:3.7
- 作者:
Wang, Zhongqun;Wang, Yan;Hu, Shengda;Liu, Naifeng - 通讯作者:
Liu, Naifeng
The influence of disease and age on human cardiac stem cells
- DOI:
10.1177/0004563213511065 - 发表时间:
2014-09-01 - 期刊:
- 影响因子:2.2
- 作者:
Hu, Shengda;Yan, Gaoliang;Ma, Genshan - 通讯作者:
Ma, Genshan
Hu, Shengda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hu, Shengda', 18)}}的其他基金
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
- 批准号:
RGPIN-2019-05899 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
- 批准号:
RGPIN-2019-05899 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
- 批准号:
RGPIN-2019-05899 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
"Symplectic topology, generalized geometry and applications"
《辛拓扑、广义几何及其应用》
- 批准号:
418535-2012 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
"Symplectic topology, generalized geometry and applications"
《辛拓扑、广义几何及其应用》
- 批准号:
418535-2012 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
"Symplectic topology, generalized geometry and applications"
《辛拓扑、广义几何及其应用》
- 批准号:
418535-2012 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
"Symplectic topology, generalized geometry and applications"
《辛拓扑、广义几何及其应用》
- 批准号:
418535-2012 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
"Symplectic topology, generalized geometry and applications"
《辛拓扑、广义几何及其应用》
- 批准号:
418535-2012 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
"Symplectic topology, generalized geometry and applications"
《辛拓扑、广义几何及其应用》
- 批准号:
418535-2012 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Domain理论与拓扑学研究
- 批准号:60473009
- 批准年份:2004
- 资助金额:7.0 万元
- 项目类别:面上项目
相似海外基金
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
- 批准号:
RGPIN-2019-05899 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
- 批准号:
RGPIN-2019-05899 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
- 批准号:
RGPIN-2019-05899 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
"Symplectic topology, generalized geometry and applications"
《辛拓扑、广义几何及其应用》
- 批准号:
418535-2012 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Generalized complex structures, 4 dimensional differential topology, noncommutative algebraic geometry and derived category
广义复结构、4维微分拓扑、非交换代数几何和派生范畴
- 批准号:
16K13755 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
"Symplectic topology, generalized geometry and applications"
《辛拓扑、广义几何及其应用》
- 批准号:
418535-2012 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
"Symplectic topology, generalized geometry and applications"
《辛拓扑、广义几何及其应用》
- 批准号:
418535-2012 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
"Symplectic topology, generalized geometry and applications"
《辛拓扑、广义几何及其应用》
- 批准号:
418535-2012 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
"Symplectic topology, generalized geometry and applications"
《辛拓扑、广义几何及其应用》
- 批准号:
418535-2012 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Research on generalized geometric structures, 4 dimensional differential topology and derived category
广义几何结构、4维微分拓扑及派生范畴研究
- 批准号:
25610011 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research