Use of estimating functions to improve sequential adaptive decisions and dynamic regularization
使用估计函数来改进顺序自适应决策和动态正则化
基本信息
- 批准号:RGPIN-2021-03747
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Inspired by my vision of developing innovative statistical theories and methods to a broad range of applications involving dynamic factors and uncertainty, my long term research program has been motivated by practical issues and impact arising from important socioeconomic needs including financial modeling, insurance risk management and complex health data analysis. Specifically my research interests include (I) statistically modeling adaptive decision processes for a variety of applications, (II) reducing data dimensionality and problem complexity, and statistically estimating the state and predicting the future movement of adaptive decision processes having unknown dynamics, (III) effectively balancing between exploitation (i.e., applying what appears to be the best among the decisions we have taken so far) and exploration (i.e., taking risk and trying a new decision) for the best global performance of the sequential adaptive decision process. Such adaptive decision processes are typically characterized with significant methodological challenges and practical constraints, including modelling dynamic data streams (e.g., time series models, state space models and filtering), adaptive but dynamic decisions (e.g., bandit models and Markov decision processes), complex data structures (such as of spatial and temporal, hyperspectral data), and randomness of the underlying environment (such as Markov switching). Aligned to my long term research goals, this NSERC proposal is focused on specific goals of enhancing statistical models and approaches such as regularization and generalized Bayesian estimating functions, with various applications such as risk management, algorithmic trading, insurance control, and reinforcement learning. I will build this NSERC program on my current research achievements on estimating functions and search for the interplay of the Bayesian and frequentist estimating functions for better state estimation, and better address the exploitation and exploration dilemma by incorporating the interplay into the bandit models, state space models and filtering, and complex models driven by stable noise with Markov switching. The proposed research program is important for training HQP on interdisciplinary research. In the next five years, I propose to train five undergraduate students, five M.Sc. students, and one Ph.D. student (to start September 2024). My research group currently has four M.Sc. students and one research assistant. The highly qualified personnel will be involved in all stages of the proposed research program and objectives. My group members and I anticipate high quality publications, conference presentations and interdisciplinary collaborations from the achieved research.
受开发创新统计理论和方法应用于涉及动态因素和不确定性的广泛应用的愿景的启发,我的长期研究计划一直受到重要社会经济需求产生的实际问题和影响的激励,包括金融建模、保险风险管理和复杂的健康数据分析。具体地说,我的研究兴趣包括:(I)对各种应用的自适应决策过程进行统计建模,(Ii)降低数据维度和问题复杂性,并从统计上估计具有未知动态的自适应决策过程的状态和预测未来的移动,(Iii)有效地平衡利用(即,应用迄今为止我们所做的决策中似乎是最好的)和探索(即,承担风险并尝试新的决策),以获得序贯自适应决策过程的最佳全局性能。这种自适应决策过程通常具有显著的方法学挑战和实际约束,包括对动态数据流(例如时间序列模型、状态空间模型和过滤)、自适应但动态决策(例如班迪特模型和马尔可夫决策过程)、复杂数据结构(例如空间和时间、高光谱数据)以及底层环境的随机性(例如马尔可夫切换)进行建模。与我的长期研究目标一致,NSERC的这项建议侧重于增强统计模型和方法的具体目标,如正则化和广义贝叶斯估计函数,以及各种应用,如风险管理、算法交易、保险控制和强化学习。我将在我目前关于估计函数的研究成果的基础上建立这个NSERC程序,并寻找贝叶斯估计函数和频率估计函数的相互作用以实现更好的状态估计,并通过将这种相互作用融入到Banddit模型、状态空间模型和滤波以及马尔可夫切换的稳定噪声驱动的复杂模型中,更好地解决开发和探索困境。建议的研究计划对于HQP在跨学科研究方面的培训很重要。在接下来的五年里,我计划培养五名本科生,五名硕士。学生和一名博士生(2024年9月开始)。我的研究小组目前有四名理科硕士。学生和一名研究助理。高素质的人员将参与拟议研究计划和目标的所有阶段。我和我的团队成员期待从所取得的研究中获得高质量的出版物、会议报告和跨学科合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liang, You其他文献
MK256 is a novel CDK8 inhibitor with potent antitumor activity in AML through downregulation of the STAT pathway.
- DOI:
10.18632/oncotarget.28305 - 发表时间:
2022-11-02 - 期刊:
- 影响因子:0
- 作者:
Lee, Jen-Chieh;Liu, Shu;Wang, Yucheng;Liang, You;Jablons, David M - 通讯作者:
Jablons, David M
Preparation of kasugamycin conjugation based on ZnO quantum dots for improving its effective utilization
- DOI:
10.1016/j.cej.2018.12.129 - 发表时间:
2019-04-01 - 期刊:
- 影响因子:15.1
- 作者:
Liang, You;Duan, Yongheng;Cao, Yongsong - 通讯作者:
Cao, Yongsong
Ionic Liquid Forms of Mesotrione with Enhanced Stability and Reduced Leaching Risk
离子液体形式的甲基磺草酮具有增强的稳定性和降低的浸出风险
- DOI:
10.1021/acssuschemeng.9b03948 - 发表时间:
2019-10-07 - 期刊:
- 影响因子:8.4
- 作者:
Wang, Weichen;Liang, You;Cao, Yongsong - 通讯作者:
Cao, Yongsong
Direct Electrohydrodynamic Patterning of High-Performance All Metal Oxide Thin-Film Electronics
- DOI:
10.1021/acsnano.9b05715 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:17.1
- 作者:
Liang, You;Yong, Jason;Skafidas, Efstratios - 通讯作者:
Skafidas, Efstratios
Pectin functionalized metal-organic frameworks as dual-stimuli-responsive carriers to improve the pesticide targeting and reduce environmental risks
- DOI:
10.1016/j.colsurfb.2022.112796 - 发表时间:
2022-09-02 - 期刊:
- 影响因子:5.8
- 作者:
Liang, You;Wang, Sijin;Huo, Zhongyang - 通讯作者:
Huo, Zhongyang
Liang, You的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liang, You', 18)}}的其他基金
Use of estimating functions to improve sequential adaptive decisions and dynamic regularization
使用估计函数来改进顺序自适应决策和动态正则化
- 批准号:
DGECR-2021-00356 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Launch Supplement
Use of estimating functions to improve sequential adaptive decisions and dynamic regularization
使用估计函数来改进顺序自适应决策和动态正则化
- 批准号:
RGPIN-2021-03747 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Use of estimating functions to improve sequential adaptive decisions and dynamic regularization
使用估计函数来改进顺序自适应决策和动态正则化
- 批准号:
DGECR-2021-00356 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Launch Supplement
Use of estimating functions to improve sequential adaptive decisions and dynamic regularization
使用估计函数来改进顺序自适应决策和动态正则化
- 批准号:
RGPIN-2021-03747 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Construction of a Model for Estimating the Number of Ward Nurses Incorporating the Nursing Competency of Nurses Supporting the Differentiation of Hospital Functions
构建结合护士护理能力的病房护士人数估算模型,支持医院功能分化
- 批准号:
16K12009 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Survival analysis and estimating functions
生存分析和估计功能
- 批准号:
8736-2011 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Inference using estimating functions with applications
通过应用程序使用估计函数进行推理
- 批准号:
356038-2008 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Survival analysis and estimating functions
生存分析和估计功能
- 批准号:
8736-2011 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Estimating Somatic Mutation Rates Using Maximum-Likelihood Methods
使用最大似然法估计体细胞突变率
- 批准号:
8397300 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Survival analysis and estimating functions
生存分析和估计功能
- 批准号:
8736-2011 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Estimating Somatic Mutation Rates Using Maximum-Likelihood Methods
使用最大似然法估计体细胞突变率
- 批准号:
8573555 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Applied Matrix Theory and Complex Approximation: Estimating Norms of Functions of Matrices
应用矩阵理论和复近似:估计矩阵函数的范数
- 批准号:
1210886 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant