Hecke algebras in the mod p Langlands program
mod p Langlands 纲领中的赫克代数
基本信息
- 批准号:RGPIN-2019-03963
- 负责人:
- 金额:$ 1.38万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Langlands program, initiated in the 1960s, is a set of conjectures predicting a unification of number theory and of representation theory of groups. The numerous developments of this program under its classical form in the last 30 years have had remarkable consequences such as the proof of Fermat's last theorem, and of Serre's modularity conjecture. Around 2000, the question of a p-adic/mod p version of these conjectures was raised, motivated by natural questions of p-adic arithmetic geometry. Because of unexpected and poorly understood phenomena involving groups other than GL_2(Q_p), statements of a general p-adic/mod p local Langlands conjecture remain elusive. For GL_2(Q_p) however, a correspondence has been established by P. Colmez and V. Paskunas (and based on the work of many others) with spectacular consequences such as the proof of the Fontaine-Mazur conjecture (by M. Kisin, M. Emerton). Progress remains to be made for more general groups. The general principle that governs the Langlands conjectures is that the correspondences should have a natural, geometric realization. This proposal suggests an approach to the mod p Langlands program via the representation theory of (derived) Hecke algebras. This approach, which is amenable to geometrization, has already proved enlightening in previous work of the applicant. We will study (joint with P. Schneider) a certain "derived" pro-p Iwahori Hecke algebra and its connections to the derived category of smooth mod p representations of a given p-adic reductive group. We will investigate a derived version of the inverse mod p Satake isomorphism and the possible interpretations of our results in terms of coherent sheaves on the affine flag variety. Ultimately, the goal will be to relate this side of the mod p Langlands correspondence to object of Galois nature such as the ones studied in the work of Colmez, Grosse-Klönne, Schneider-Vignéras. The proposal has several components that are suitable for HQP who will be introduced to a subject with ramifications in several very dynamic areas of number theory and representation theory.
朗兰兹纲领(英语:Langlands program),始于1960年代,是一套预言数论和群表示论统一的理论。在过去的30年里,这个程序在其经典形式下的许多发展产生了显着的后果,例如费马最后定理的证明和塞尔的模块性猜想。在2000年左右,这些代数的p-adic/mod p版本的问题被提出,其动机是p-adic算术几何的自然问题。由于GL_2(Q_p)以外的群中存在着意想不到的现象,而且人们对这些现象的理解还很有限,因此对一般的p-adic/modp局部Langlands猜想的陈述仍然是难以捉摸的。然而,对于GL_2(Q_p),P. Colmez和V. Paskunas(并以许多其他人的工作为基础)建立了一个对应关系,并产生了惊人的结果,如Fontaine-Mazur猜想的证明(M. Kisin,M. Emerton)。在更一般的群体方面仍有待取得进展。控制Langlands代数的一般原则是对应应该有一个自然的几何实现。这个建议通过(导出)Hecke代数的表示理论来研究mod p Langlands程序。这种方法适合于几何化,已经在申请人的先前工作中证明是有启发性的。我们将研究(与P. Schneider联合)一个特定的“导出”pro-p Iwahori Hecke代数及其与给定p-adic约化群的光滑mod p表示的导出范畴的联系。我们将调查派生版本的逆模p佐竹同构和可能的解释,我们的结果在相干层的仿射旗品种。最终,我们的目标将是把模p朗兰兹对应的这一面与伽罗瓦性质的对象联系起来,例如科尔梅兹、格罗斯-克洛内、施奈德-维涅拉斯的工作中所研究的对象。该提案有几个组成部分,是适合HQP谁将被介绍给一个主题,在数论和表示论的几个非常动态的领域的分支。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ollivier, Rachel其他文献
Timing of maternal mortality and severe morbidity during the postpartum period: a systematic review.
- DOI:
10.11124/jbies-20-00578 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:2.7
- 作者:
Dol, Justine;Hughes, Brianna;Bonet, Mercedes;Dorey, Rachel;Dorling, Jon;Grant, Amy;Langlois, Etienne, V;Monaghan, Joelle;Ollivier, Rachel;Parker, Robin;Roos, Nathalie;Scott, Heather;Shin, Hwayeon Danielle;Curran, Janet - 通讯作者:
Curran, Janet
"There's an Etiquette to Zoom That's Not Really Present In-Person": A Qualitative Study Showing How the Mute Button Shapes Virtual Postpartum Support for New Parents.
- DOI:
10.1177/10497323231187541 - 发表时间:
2023-09 - 期刊:
- 影响因子:3.2
- 作者:
MacLeod, Anna;Aston, Megan;Price, Sheri;Stone, Kathryn;Ollivier, Rachel;Benoit, Britney;Sim, Meaghan;Marcellus, Lenora;Jack, Susan;Joy, Phillip;Gholampourch, Masoumeh;Iduye, Damilola - 通讯作者:
Iduye, Damilola
Timing of neonatal mortality and severe morbidity during the postnatal period: a systematic review.
- DOI:
10.11124/jbies-21-00479 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:2.7
- 作者:
Dol, Justine;Hughes, Brianna;Bonet, Mercedes;Dorey, Rachel;Dorling, Jon;Grant, Amy;Langlois, Etienne V. V.;Monaghan, Joelle;Ollivier, Rachel;Parker, Robin;Roos, Nathalie;Scott, Heather;Shin, Hwayeon Danielle;Curran, Janet - 通讯作者:
Curran, Janet
'Feeling Ready': A Feminist Poststructural Analysis of Postpartum Sexual Health.
- DOI:
10.1177/10497323231209842 - 发表时间:
2024-02 - 期刊:
- 影响因子:3.2
- 作者:
Ollivier, Rachel;Aston, Megan;Price, Sheri;Sheppard-LeMoine, Debbie;Steenbeek, Audrey - 通讯作者:
Steenbeek, Audrey
Let's talk about sex: A feminist poststructural approach to addressing sexual health in the healthcare setting
- DOI:
10.1111/jocn.14685 - 发表时间:
2019-02-01 - 期刊:
- 影响因子:4.2
- 作者:
Ollivier, Rachel;Aston, Megan;Price, Sheri - 通讯作者:
Price, Sheri
Ollivier, Rachel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ollivier, Rachel', 18)}}的其他基金
Hecke algebras in the mod p Langlands program
mod p Langlands 纲领中的赫克代数
- 批准号:
RGPIN-2019-03963 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Hecke algebras in the mod p Langlands program
mod p Langlands 纲领中的赫克代数
- 批准号:
RGPIN-2019-03963 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Hecke algebras in the mod p Langlands program
mod p Langlands 纲领中的赫克代数
- 批准号:
RGPIN-2019-03963 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Mod p Langlands program for p-adic groups and Hecke algebras
p-adic 群和 Hecke 代数的 Mod p Langlands 程序
- 批准号:
RGPIN-2014-04005 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Mod p Langlands program for p-adic groups and Hecke algebras
p-adic 群和 Hecke 代数的 Mod p Langlands 程序
- 批准号:
RGPIN-2014-04005 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Mod p Langlands program for p-adic groups and Hecke algebras
p-adic 群和 Hecke 代数的 Mod p Langlands 程序
- 批准号:
RGPIN-2014-04005 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Mod p Langlands program for p-adic groups and Hecke algebras
p-adic 群和 Hecke 代数的 Mod p Langlands 程序
- 批准号:
RGPIN-2014-04005 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Mod p Langlands program for p-adic groups and Hecke algebras
p-adic 群和 Hecke 代数的 Mod p Langlands 程序
- 批准号:
RGPIN-2014-04005 - 财政年份:2014
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Hecke algebras in the mod p Langlands program
mod p Langlands 纲领中的赫克代数
- 批准号:
RGPIN-2019-03963 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Hecke algebras in the mod p Langlands program
mod p Langlands 纲领中的赫克代数
- 批准号:
RGPIN-2019-03963 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Hecke algebras in the mod p Langlands program
mod p Langlands 纲领中的赫克代数
- 批准号:
RGPIN-2019-03963 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Mod p Langlands program for p-adic groups and Hecke algebras
p-adic 群和 Hecke 代数的 Mod p Langlands 程序
- 批准号:
RGPIN-2014-04005 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Mod p Langlands program for p-adic groups and Hecke algebras
p-adic 群和 Hecke 代数的 Mod p Langlands 程序
- 批准号:
RGPIN-2014-04005 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Mod p Langlands program for p-adic groups and Hecke algebras
p-adic 群和 Hecke 代数的 Mod p Langlands 程序
- 批准号:
RGPIN-2014-04005 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Mod p Langlands program for p-adic groups and Hecke algebras
p-adic 群和 Hecke 代数的 Mod p Langlands 程序
- 批准号:
RGPIN-2014-04005 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Mod p Langlands program for p-adic groups and Hecke algebras
p-adic 群和 Hecke 代数的 Mod p Langlands 程序
- 批准号:
RGPIN-2014-04005 - 财政年份:2014
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Modular forms and Hecke algebras mod p
模形式和 Hecke 代数 mod p
- 批准号:
447870-2013 - 财政年份:2013
- 资助金额:
$ 1.38万 - 项目类别:
University Undergraduate Student Research Awards
Mod p local Langlands program for p-adic reductive groups and representations of Hecke algebras
p-进约简群的 Mod p 局部 Langlands 程序和 Hecke 代数的表示
- 批准号:
1201376 - 财政年份:2012
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant