Integrable Probability and Universality in Mathematical Physics and Machine Learning

数学物理和机器学习中的可积概率和普适性

基本信息

  • 批准号:
    RGPIN-2022-04106
  • 负责人:
  • 金额:
    $ 1.38万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This proposal focuses on the study of universal behaviors in critical phenomena at the interface between some probabilistic models (random matrices, interacting particle systems) and the theory of integrable systems (e.g. nonlinear wave equations). Integrable systems consist in a class of overdetermined sets of partial differential equations whose solutions can be thoroughly analyzed via a suitable nonlinear transformation (Scattering Transform) that reduces the complicated, nonlinear dynamics into a linear one. In certain critical (e.g. phase transition) or asymptotic (e.g. large-time, continuum limit) regimes, Integrable System models or Random Matrix ensembles display remarkable universality patterns, such that their behaviour become independent on the initial data (even in the presence of randomness) or on the specific details of the probability distribution they are based on. The motivations for this work derive from a plethora of models of current physical interest, including crystal and polymer growth phenomena, mutually-avoiding multiple random-walkers, nonlinear phenomena in optics, polymers, superconductors (e.g. Bose-Einstein condensate) and fluids (most notably, rogue waves). This theoretical research will additionally be applied to understand Machine Learning (ML) phenomena and models, by describing them through a much needed rigorous framework. The main strategy for all these instances will be their reformulation in terms of a particular boundary value problem, the so-called Riemann-Hilbert problem (RHP) and its geometrical connection with Painlevé equations and isomonodromic tau functions. The research agenda is organized into the following parallel directions of research: (1) analyze universality properties of statistical quantities of determinantal point processes and random matrix models within certain asymptotic regimes, and their geometrical interpretation; (2) analyze asymptotic behaviour of dispersive integrable PDEs (e.g. Korteweg-de Vries, Nonlinear Schrödinger equations) with randomness: in particular, solitons and soliton gasses; (3) study universality aspects of overparametrized ML models: investigate the emerging of integrable structures in certain asymptotic or critical regimes (e.g. long time training, infinitely deep/wide networks, mean-field regime, neural tangent kernel regime, etc.) and describe the generalization risk curve of deep models.
这一建议侧重于研究某些概率模型(随机矩阵、相互作用的粒子系统)和可积系统理论(例如非线性波动方程)之间的临界现象中的普遍行为。可积系统是一类超定偏微分方程组,其解可以通过适当的非线性变换(散射变换)进行彻底的分析,从而将复杂的非线性动力学简化为线性动力学。在某些临界(例如相变)或渐近(例如大时间、连续极限)的区域中,可积系统模型或随机矩阵系综显示出显著的普适性模式,使得它们的行为独立于初始数据(即使在存在随机性的情况下)或它们所基于的概率分布的具体细节。这项工作的动机来自于当前物理兴趣的大量模型,包括晶体和聚合物生长现象、相互避免多个随机游动、光学中的非线性现象、聚合物、超导体(例如玻色-爱因斯坦凝聚体)和流体(最显著的是流浪波)。这项理论研究还将应用于理解机器学习(ML)现象和模型,通过迫切需要的严格框架来描述它们。所有这些实例的主要策略将是根据一个特定的边值问题,即所谓的Riemann-Hilbert问题(RHP)及其与Painlevé方程和等单调tau函数的几何联系来重新表述它们。研究议程分为以下平行的研究方向:(1)分析在某些渐近区域内行列式点过程和随机矩阵模型的统计量的普适性及其几何解释;(2)分析具有随机性的色散可积偏微分方程组(例如Korteweg-de Vries,非线性薛定谔方程)的渐近行为:特别是孤子和孤子气体;(3)研究过参数ML模型的普适性方面:研究在某些渐近或临界区域(例如长时间训练、无限深/宽网络、平均场区域、神经切核区域等)中可积结构的出现。并描述了深度模型的泛化风险曲线。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Girotti, Manuela其他文献

Large Gap Asymptotics at the Hard Edge for Product Random Matrices and Muttalib-Borodin Ensembles

Girotti, Manuela的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Girotti, Manuela', 18)}}的其他基金

Integrable Probability and Universality in Mathematical Physics and Machine Learning
数学物理和机器学习中的可积概率和普适性
  • 批准号:
    DGECR-2022-00450
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

Conference: Northeast Probability Seminar 2023-2025
会议:东北概率研讨会2023-2025
  • 批准号:
    2331449
  • 财政年份:
    2024
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Continuing Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
  • 批准号:
    2339898
  • 财政年份:
    2024
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Continuing Grant
Conference: Cincinnati Symposium on Probability 2024
会议:2024 年辛辛那提概率研讨会
  • 批准号:
    2413604
  • 财政年份:
    2024
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
Conference: Midwest Probability Colloquium 2023-2025
会议:2023-2025 年中西部概率研讨会
  • 批准号:
    2335784
  • 财政年份:
    2024
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Continuing Grant
Random Matrix Theory: Free Probability Theory and beyond
随机矩阵理论:自由概率论及其他理论
  • 批准号:
    23K20800
  • 财政年份:
    2024
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The research on the stability of the density functions for the existence probability of orbits
轨道存在概率密度函数的稳定性研究
  • 批准号:
    23K03185
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
  • 批准号:
    2247117
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
Conference: Northeast Probability Seminar 2022
会议:2022年东北概率研讨会
  • 批准号:
    2243505
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
Measure Transportation And Notions Of Dimensionality In High Dimensional Probability
在高维概率中测量传输和维数概念
  • 批准号:
    2331920
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Some Applications of Free Probability and Random Matrix Theory
LEAPS-MPS:自由概率和随机矩阵理论的一些应用
  • 批准号:
    2316836
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了