Advanced Mathematical Technologies for Respiratory Infection Risk Assessment and Pharmaceutical Intervention Scenario Analysis
呼吸道感染风险评估和药物干预场景分析的先进数学技术
基本信息
- 批准号:576914-2022
- 负责人:
- 金额:$ 10.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The program will establish and sustain a dedicated cadre of academic researchers and train highly qualified individuals, in collaboration with Sanofi scientists, to provide evidence-based and data-driven strategic direction and enhanced research capacity around respiratory infectious diseases relevant to vaccine product pipeline and the optimal use of vaccinations in Canada and globally. The program will support mathematical modelling, neural network-based data analytics and health economics for rapid response to outbreaks, and for proactive, real-time, and both prospective and retrospective evaluation of control and prevention programs using multi-source data. The initial focus will be on Sanofi's vaccines at different stages of development and registration against prototypical respiratory infections such as influenza, Covid-19 and Respiratory Syncytial Virus, but the methodologies and technologies, as well as the datasets collected and analyzed will be as generic as possible. The established capacity will serve as a vaccine R&D platform and can be activated for rapid mobilization in response to emerging public health threats and industrial production needs. We develop models and modelling technologies for scenario planning as a central component of risk management efforts to meet the critical need in compressing timelines for vaccines to be discovered, produced and made accessible at scale. Our research supports scenario planning over three distinct periods. During a short-term period, our Nowcasting and Nearcasting Techniques support decisions on interventions and the required manufacturing capacity for development and deployment, and provide decision support on clinical trials for new vaccines. During a mid- to long-term period, our Transmission Dynamics Models and Scenario Optimization Technologies support decision making on where/when to test new vaccine candidates and what scale of the production capacity is needed. During a long-term period, when the disease may be endemic and can cause recurrent outbreaks, our Bifurcation and Optimization Techniques support planing for further vaccine manufacturing capacity needs, and inform optimal vaccine boosting scenarios and intervals.
该计划将建立和维持一支专门的学术研究人员队伍,并与赛诺菲科学家合作培训高素质的个人,以提供基于证据和数据驱动的战略方向,并增强与疫苗产品管道相关的呼吸道传染病的研究能力,以及加拿大和全球疫苗的最佳使用。该计划将支持数学建模,基于神经网络的数据分析和卫生经济学,以快速应对疫情,并使用多源数据对控制和预防计划进行前瞻性,实时,前瞻性和回顾性评估。最初的重点将是赛诺菲针对典型呼吸道感染(如流感、新冠肺炎和呼吸道合胞病毒)的不同开发和注册阶段的疫苗,但方法和技术以及收集和分析的数据集将尽可能通用。已建立的能力将作为疫苗研发平台,并可启动以迅速动员,应对新出现的公共卫生威胁和工业生产需求。 我们开发用于情景规划的模型和建模技术,作为风险管理工作的核心组成部分,以满足压缩疫苗发现,生产和大规模提供的时间表的关键需求。我们的研究支持三个不同时期的情景规划。在短期内,我们的近播和近播技术支持有关干预措施的决策以及开发和部署所需的制造能力,并为新疫苗的临床试验提供决策支持。在中长期内,我们的传播动力学模型和情景优化技术支持在何处/何时测试新候选疫苗以及需要多大规模的生产能力的决策。在长期内,当疾病可能是地方性的并可能导致反复爆发时,我们的分叉和优化技术支持规划进一步的疫苗生产能力需求,并为最佳的疫苗接种方案和间隔提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wu, JianhongJ其他文献
Wu, JianhongJ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Mathematical modeling for 3D plant morphology as fundamental technologies of plant phenotyping
3D植物形态学数学建模作为植物表型分析的基础技术
- 批准号:
21K14947 - 财政年份:2021
- 资助金额:
$ 10.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of imaging technologies and mathematical models for the evaluation of neonatal brain health at the bedside using near-infrared spectroscopy and electroencephalography
开发成像技术和数学模型,利用近红外光谱和脑电图在床边评估新生儿大脑健康
- 批准号:
517318-2018 - 财政年份:2019
- 资助金额:
$ 10.26万 - 项目类别:
Postdoctoral Fellowships
Development of imaging technologies and mathematical models for the evaluation of neonatal brain health at the bedside using near-infrared spectroscopy and electroencephalography**
开发成像技术和数学模型,利用近红外光谱和脑电图在床边评估新生儿大脑健康**
- 批准号:
517318-2018 - 财政年份:2018
- 资助金额:
$ 10.26万 - 项目类别:
Postdoctoral Fellowships
Mathematical Modelling to Support the Design and Development of Upper Limb Prostheses - Healthcare technologies - Assistive Technology, Rehabilitation
支持上肢假肢设计和开发的数学建模 - 医疗保健技术 - 辅助技术、康复
- 批准号:
1900942 - 财政年份:2017
- 资助金额:
$ 10.26万 - 项目类别:
Studentship
Development of imaging technologies and mathematical models for the evaluation of neonatal brain health at the bedside using near-infrared spectroscopy and electroencephalography
开发成像技术和数学模型,利用近红外光谱和脑电图在床边评估新生儿大脑健康
- 批准号:
517318-2018 - 财政年份:2017
- 资助金额:
$ 10.26万 - 项目类别:
Postdoctoral Fellowships
EPSRC Centre for New Mathematical Sciences Capabilities for Healthcare Technologies
EPSRC 医疗保健技术新数学科学能力中心
- 批准号:
EP/N014499/1 - 财政年份:2015
- 资助金额:
$ 10.26万 - 项目类别:
Research Grant
Scaling mechanism revealed by single-molecule detection technologies and mathematical modeling
单分子检测技术和数学模型揭示的缩放机制
- 批准号:
24770221 - 财政年份:2012
- 资助金额:
$ 10.26万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
EXP: SiMSAM: Bridging Student, Scientific, and Mathematical Models with Expressive Technologies
EXP:SiMSAM:用表达技术连接学生、科学和数学模型
- 批准号:
1217100 - 财政年份:2012
- 资助金额:
$ 10.26万 - 项目类别:
Standard Grant
Integrated physical and mathematical modeling approaches for facilitating R&D of remediation technologies for the management of petroleum-contaminated sites in Atlantic Canada
促进 R 的集成物理和数学建模方法
- 批准号:
251325-2006 - 财政年份:2010
- 资助金额:
$ 10.26万 - 项目类别:
Discovery Grants Program - Individual
Third-Generation Solar Technologies Multidisciplinary Workshop: Synergistic Chemistry-Materials-Mathematical Sciences Approaches to Addressing Solar Energy Problems
第三代太阳能技术多学科研讨会:协同化学-材料-数学科学方法解决太阳能问题
- 批准号:
1032936 - 财政年份:2010
- 资助金额:
$ 10.26万 - 项目类别:
Standard Grant














{{item.name}}会员




