Statistical Modelling of Infectious Disease and Environmental Systems

传染病和环境系统的统计模型

基本信息

  • 批准号:
    RGPIN-2018-04701
  • 负责人:
  • 金额:
    $ 1.17万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Modelling the spread of infectious diseases is important for maintaining human, animal, and plant health, as well as maintaining economic security and international trade. Understanding what factors affect the spread of a disease, or which individuals are more likely to become infected is critical in preventing and controlling a disease outbreak.A class of statistical models, known as “individual-level models”, describe the spread of an infectious disease through a population by considering information for each individual within that population. These individuals could be individual people, plants, houses, or farms, each with their own unique set of information (such as geographical location, whether they have been vaccinated, etc.). Individual-level models use this very specific, individual-level information to describe how an infectious disease may spread across both space and time. The advantage these models is that they are very flexible, and allow for a population in which individuals are heterogeneous (e.g. not all the same). However, these models are limited in that they require a large amount of computational time, which may be unacceptable in the event of a disease outbreak when it is necessary to quickly understand how a disease.The research program described here aims to develop ways in which this computational burden can be reduced, while still accurately identifying factors which may influence the spread of the disease. Furthermore, this research program intends to develop a subgroup of individual-level models that can incorporate missing or potentially inaccurate individual-level data, a phenomenon that often arises in public health and other such data.Another objective of this research program is related to environmental effects monitoring initiatives (i.e., the joint federal and provincial government oil sands monitoring program in Alberta). Like the idea of surveillance for a disease outbreak, to determine whether human activity is having an environmental impact on wild populations (i.e., fish), it is necessary to identify when there are significant changes in these populations (i.e., size, weight, tumour incidence, reproductive success, etc.). The surveillance techniques for monitoring environmental effects need to be able to adapt to natural changes in the environment, as well as distinguish observed effects that are due to industrial/human influence and are not within the natural variation that is always present within an ecosystem. This proposed research program aims to develop statistical models for monitoring environmental effects that can identify significant population changes, while incorporating information about the surrounding environment and human activities that may be related to these changes. This information is pivotal in detecting impacts caused by industrial activities, and assessing the extent of any such impacts.
对传染病的传播进行建模对于维护人类、动物和植物的健康以及维护经济安全和国际贸易都很重要。了解哪些因素影响疾病的传播,或哪些人更有可能被感染,这对预防和控制疾病爆发至关重要。一类统计模型,称为“个体水平模型”,通过考虑人群中每个人的信息来描述传染病在人群中的传播。这些人可以是个人、植物、房屋或农场,每个人都有自己独特的信息集(如地理位置、是否接种过疫苗等)。个人层面的模型使用这种非常具体的个人层面的信息来描述传染病如何跨越空间和时间传播。这些模型的优点是它们非常灵活,并允许在群体中个体是不同的(例如,并不都是相同的)。然而,这些模型的局限性在于它们需要大量的计算时间,这在疾病爆发的情况下可能是不可接受的,因为需要快速了解疾病是如何发生的。这里描述的研究计划旨在开发可以减轻计算负担的方法,同时仍然准确地识别可能影响疾病传播的因素。此外,这项研究计划打算开发一个个体水平模型的子组,可以纳入缺失或潜在不准确的个人水平数据,这是公共卫生和其他此类数据中经常出现的现象。该研究计划的另一个目标与环境影响监测倡议有关(即,艾伯塔省联邦和省政府联合油砂监测计划)。与监测疾病暴发的想法一样,为了确定人类活动是否对野生种群(即鱼类)产生环境影响,有必要确定这些种群何时发生重大变化(即大小、体重、肿瘤发病率、繁殖成功等)。监测环境影响的监测技术需要能够适应环境中的自然变化,并区分由于工业/人类影响而观察到的影响,以及不在生态系统内始终存在的自然变化范围内的影响。这项拟议的研究计划旨在开发监测环境影响的统计模型,以确定重大的人口变化,同时纳入可能与这些变化相关的周围环境和人类活动的信息。这些信息对于检测工业活动造成的影响和评估任何此类影响的程度至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Deeth, Lorna其他文献

Deeth, Lorna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Deeth, Lorna', 18)}}的其他基金

Statistical Modelling of Infectious Disease and Environmental Systems
传染病和环境系统的统计模型
  • 批准号:
    RGPIN-2018-04701
  • 财政年份:
    2021
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modelling of Infectious Disease and Environmental Systems
传染病和环境系统的统计模型
  • 批准号:
    RGPIN-2018-04701
  • 财政年份:
    2020
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modelling of Infectious Disease and Environmental Systems
传染病和环境系统的统计模型
  • 批准号:
    RGPIN-2018-04701
  • 财政年份:
    2019
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modelling of Infectious Disease and Environmental Systems
传染病和环境系统的统计模型
  • 批准号:
    RGPIN-2018-04701
  • 财政年份:
    2018
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modelling of Infectious Disease and Environmental Systems
传染病和环境系统的统计模型
  • 批准号:
    DGECR-2018-00285
  • 财政年份:
    2018
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Modelling in practice: an institutional ethnography of infectious disease modelling
实践中的建模:传染病建模的机构民族志
  • 批准号:
    2905963
  • 财政年份:
    2024
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Studentship
A Unified Experimental and Modelling Approach to Determine the Infectious Viral Bio-Aerosol Filtration Efficacy of Face Coverings.
确定面罩的传染性病毒生物气溶胶过滤功效的统一实验和建模方法。
  • 批准号:
    10074419
  • 财政年份:
    2023
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Collaborative R&D
Modelling the spread of infectious diseases in forest systems
模拟森林系统中传染病的传播
  • 批准号:
    2836457
  • 财政年份:
    2023
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Studentship
Modelling the effect of public health interventions on COVID-19 case counts in a closed population through wastewater surveillance: implications in infectious disease outbreak response and epidemiology
通过废水监测模拟公共卫生干预措施对封闭人群中 COVID-19 病例数的影响:对传染病爆发应对和流行病学的影响
  • 批准号:
    486062
  • 财政年份:
    2022
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Studentship Programs
Advances in data integration modelling for infectious disease response
传染病应对数据集成建模的进展
  • 批准号:
    FT210100034
  • 财政年份:
    2022
  • 资助金额:
    $ 1.17万
  • 项目类别:
    ARC Future Fellowships
Modelling human behaviour response to public policy and its impact on infectious disease spread - case studies using AI/ML, data science, game theory and optimization
模拟人类对公共政策的行为反应及其对传染病传播的影响 - 使用人工智能/机器学习、数据科学、博弈论和优化进行案例研究
  • 批准号:
    572512-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Alliance Grants
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
  • 批准号:
    RGPIN-2020-05485
  • 财政年份:
    2022
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Discovery Grants Program - Individual
Establishment of real-time animal infectious disease mathematical modelling research platform by the analysis of past epidemics
通过以往疫情分析建立实时动物传染病数学模型研究平台
  • 批准号:
    22K05992
  • 财政年份:
    2022
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Objectives matter: A mathematical modelling framework to identify optimal control strategies for future infectious disease outbreaks
目标很重要:数学模型框架可确定未来传染病爆发的最佳控制策略
  • 批准号:
    2737654
  • 财政年份:
    2022
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Studentship
Using Agent Based Modelling and Mobility Data to Predict and Respond to the Outbreak and Spread of Infectious Diseases: A Case Study of SARS-CoV-2 in
使用基于主体的建模和移动数据来预测和应对传染病的爆发和传播:以 SARS-CoV-2 为例
  • 批准号:
    2569736
  • 财政年份:
    2021
  • 资助金额:
    $ 1.17万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了