Exponential Models on Manifolds
流形上的指数模型
基本信息
- 批准号:RGPIN-2022-02945
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Formal statistical analysis of directional data begins with the von Mises-Fisher distribution. This distribution is a first order exponential model that describes a mean direction as well as concentration. To incorporate a second order exponential term, several attempts were made but the formal structure was assembled in the Bingham distribution. As this is a second order exponential model, this distribution is useful for axial data. Subsequent to the latter attempts to exponentially incorporate the first and second order simultaneously were made resulting in the Fisher-Bingham distributiion. In terms of estimation, numerical maximum likelihood or method of moment methods have been primarily used. As exponential models involving many higher-order terms, including the Fisher-Bingham distribution, involve complicated normalizing constants, this presents challenges as they would need to be approximately and/or numerically dealt with. Thus estimation would have to be calculated numerically and would not be available in closed form. As a way around this a regression based approach was formulated where a consistent nonparametric density estimator replaced the normalizing constant. This leads to a regression estimator that was asymptotically equivalent to the maximum likelihood estimator. This of course means that because this is formulated as a canonical exponential model of arbitrary order, statistical theory provides asymptotic normality and therefore statistical inference could be performed. The hypersphere is a generic example of a manifold. By this we mean that around every point, there is a neighbourhood that is topologically the same as the open unit ball in some Euclidean space. The formalization for directional data analysis, especially through the spherical harmonic basis can be generalized to a manifold. This can be achieved through understanding the spherical harmonics as the eigenfunctions of the Laplacian on a manifold. Although concentration to the hypersphere is specific, most of the methods developed can be extended to manifolds and along with applications, will be the main content of this research program.
方向数据的正式统计分析从von Mises-Fisher分布开始。该分布是描述平均方向以及浓度的一阶指数模型。为了包含二阶指数项,进行了几次尝试,但正式结构是在宾汉分布中组装的。由于这是一个二阶指数模型,该分布对于轴向数据很有用。在后者之后,人们试图同时将一阶和二阶指数结合起来,从而产生了Fisher-Bingham分布。在估计方面,主要使用数值最大似然法或矩量法。由于指数模型涉及许多高阶项,包括Fisher-Bingham分布,涉及复杂的归一化常数,这带来了挑战,因为它们需要近似和/或数值处理。因此,估计数必须以数字计算,而不能以封闭形式提供。作为一种方法,围绕这一回归为基础的方法制定了一致的非参数密度估计取代了归一化常数。这导致回归估计量渐近等价于最大似然估计量。这当然意味着,因为这是一个任意阶的正则指数模型,统计理论提供了渐近正态性,因此可以进行统计推断。超球面是流形的一个一般例子。我们的意思是,在每一点周围,都有一个邻域在拓扑上与某个欧几里得空间中的开单位球相同。方向数据分析的形式化,特别是通过球调和基,可以推广到一个流形。这可以通过将球谐函数理解为流形上拉普拉斯算子的本征函数来实现。虽然对超球面的研究是特定的,但大多数方法都可以推广到流形上,并沿着应用,将是本研究计划的主要内容。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kim, Peter其他文献
Successful Corneal Autograft After Clearance of Anterior Chamber Cytomegalovirus With Oral Valganciclovir in a Patient With Multiple Failed Corneal Allografts
- DOI:
10.1097/ico.0b013e3182120f73 - 发表时间:
2011-09-01 - 期刊:
- 影响因子:2.8
- 作者:
Lusthaus, Jed A.;Kim, Peter;Wechsler, Alfred W. - 通讯作者:
Wechsler, Alfred W.
Risk factors for degenerative, symptomatic rotator cuff tears: a case-control study.
- DOI:
10.1016/j.jse.2021.10.006 - 发表时间:
2022-04 - 期刊:
- 影响因子:3
- 作者:
Song, Amos;Cannon, Damien;Kim, Peter;Ayers, Gregory D.;Gao, Chan;Giri, Ayush;Jain, Nitin B. - 通讯作者:
Jain, Nitin B.
Use of Advance Care Planning Billing Codes in a Tertiary Care Center Setting
- DOI:
10.3122/jabfm.2019.06.190121 - 发表时间:
2019-11-01 - 期刊:
- 影响因子:2.9
- 作者:
Kim, Peter;Daly, Jeanette M.;Levy, Barcey T. - 通讯作者:
Levy, Barcey T.
Increased risk of malignancy for patients older than 40 years with appendicitis and an appendix wider than 10 mm on computed tomography scan: A post hoc analysis of an EAST multicenter study
- DOI:
10.1016/j.surg.2020.05.044 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:3.8
- 作者:
Naar, Leon;Kim, Peter;Kaafarani, Haytham M. A. - 通讯作者:
Kaafarani, Haytham M. A.
Artificial intelligence-augmented analysis of contemporary procedural, mortality, and cost trends in carcinoid heart disease in a large national cohort with a focus on the "forgotten pulmonic valve".
- DOI:
10.3389/fcvm.2022.1071138 - 发表时间:
2022 - 期刊:
- 影响因子:3.6
- 作者:
Monlezun, Dominique J.;Badalamenti, Andrew;Javaid, Awad;Marmagkiolis, Kostas;Honan, Kevin;Kim, Jin Wan;Patel, Rishi;Akhanti, Bindu;Halperin, Dan;Dasari, Arvind;Koutroumpakis, Efstratios;Kim, Peter;Lopez-Mattei, Juan;Yusuf, Syed Wamique;Cilingiroglu, Mehmet;Mamas, Mamas A.;Gregoric, Igor;Yao, James;Hassan, Saamir;Iliescu, Cezar - 通讯作者:
Iliescu, Cezar
Kim, Peter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kim, Peter', 18)}}的其他基金
Mechanism of targeting of Peroxisome-Mitochondria localizing proteins
过氧化物酶体-线粒体定位蛋白的靶向机制
- 批准号:
RGPIN-2020-05865 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Bioinformatics and Biostatistics of Gastrointestinal Diseases and Geometric Statistics
胃肠道疾病生物信息学和生物统计学与几何统计学
- 批准号:
RGPIN-2016-03909 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Mechanism of targeting of Peroxisome-Mitochondria localizing proteins
过氧化物酶体-线粒体定位蛋白的靶向机制
- 批准号:
RGPIN-2020-05865 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Bioinformatics and Biostatistics of Gastrointestinal Diseases and Geometric Statistics
胃肠道疾病生物信息学和生物统计学与几何统计学
- 批准号:
RGPIN-2016-03909 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Mechanism of targeting of Peroxisome-Mitochondria localizing proteins
过氧化物酶体-线粒体定位蛋白的靶向机制
- 批准号:
RGPIN-2020-05865 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Bioinformatics and Biostatistics of Gastrointestinal Diseases and Geometric Statistics
胃肠道疾病生物信息学和生物统计学与几何统计学
- 批准号:
RGPIN-2016-03909 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Unconventional ER exit pathway in mammalian Cells
哺乳动物细胞中非常规的 ER 退出途径
- 批准号:
RGPIN-2015-04077 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Unconventional ER exit pathway in mammalian Cells
哺乳动物细胞中非常规的 ER 退出途径
- 批准号:
RGPIN-2015-04077 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Bioinformatics and Biostatistics of Gastrointestinal Diseases and Geometric Statistics
胃肠道疾病生物信息学和生物统计学与几何统计学
- 批准号:
RGPIN-2016-03909 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Unconventional ER exit pathway in mammalian Cells
哺乳动物细胞中非常规的 ER 退出途径
- 批准号:
RGPIN-2015-04077 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Algebraic models for non-simply connected manifolds
非简连通流形的代数模型
- 批准号:
1916669 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Studentship
Mathematical models on one-dimensional elastic bodies in Riemannian manifolds and their applications
黎曼流形中一维弹性体数学模型及其应用
- 批准号:
15K04863 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Frobenius manifolds, Hurwitz spaces and random matrix models
Frobenius 流形、Hurwitz 空间和随机矩阵模型
- 批准号:
358371-2008 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Frobenius manifolds, Hurwitz spaces and random matrix models
Frobenius 流形、Hurwitz 空间和随机矩阵模型
- 批准号:
358371-2008 - 财政年份:2011
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Frobenius manifolds, Hurwitz spaces and random matrix models
Frobenius 流形、Hurwitz 空间和随机矩阵模型
- 批准号:
358371-2008 - 财政年份:2010
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Frobenius manifolds, Hurwitz spaces and random matrix models
Frobenius 流形、Hurwitz 空间和随机矩阵模型
- 批准号:
358371-2008 - 财政年份:2009
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Statistical Analysis for Models involving Riemannian Manifolds
涉及黎曼流形的模型的统计分析
- 批准号:
0806128 - 财政年份:2008
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Frobenius manifolds, Hurwitz spaces and random matrix models
Frobenius 流形、Hurwitz 空间和随机矩阵模型
- 批准号:
358371-2008 - 财政年份:2008
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Effective Rigidity, Combinatorial Models, and Parameter Spaces for Low-Dimensional Hyperbolic Manifolds
低维双曲流形的有效刚性、组合模型和参数空间
- 批准号:
0505442 - 财政年份:2005
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Combinatorial Models for Manifolds and Vector Bundles
流形和向量束的组合模型
- 批准号:
9803615 - 财政年份:1998
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant