Mathematics of emergent behaviour and applications
突发行为数学及其应用
基本信息
- 批准号:RGPIN-2019-05191
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nature is replete with examples where individuals (or particles) following simple rules can lead to complex and beautiful overall patterns, often given a vague name of "emergent behaviour". Some examples include biological swarms (from bacterial aggregation to school of fish, murmuration of starlings...), Bose-Einstein Condensates at atomic level, autonomous robots, and many others. Amazingly, these complex and beautiful patterns are often the result of relatively simple physical or chemical laws at a microscopic level. Oftentimes, these patterns are self-assembled from constituent components that have a relatively simple description. The overall system behaviour results from complex nonlinear interactions of these individual components. The goal of my research is to study the fundamentals of emergent behaviour, from microscopic rules to macroscopic emergence. This includes: understanding how to derive the macroscopic description from the rules at a microscopic level; developing new and extending existing models; applying and extending mathematical techniques and computer tools; collaborating with other scientists to apply these ideas to problems in mathematics, physics and biology. There is a very strong potential for cross-fertilization between the different disciplines. I bring a unique perspective to this field, with extensive expertise in both PDE methods (asymptotics, localized patterns...) as well as multi-particle dynamical systems. The main subtopics are (1) Emergent behaviour in the context of Partial Differential Equations; (2) Noise-driven particle models and their macroscopic limits; and (3) Applications to biology and autonomous systems.
自然界充满了这样的例子:遵循简单规则的个体(或粒子)可以导致复杂而美丽的整体模式,通常被赋予一个模糊的名称“涌现行为”。一些例子包括生物群(从细菌聚集到鱼群,椋鸟的低语.),原子水平的玻色-爱因斯坦凝聚,自主机器人,以及许多其他。令人惊讶的是,这些复杂而美丽的图案往往是微观层面上相对简单的物理或化学定律的结果。通常,这些模式是由描述相对简单的组成组件自组装而成的。整个系统的行为是由这些单独组件的复杂非线性相互作用引起的。我的研究目标是研究涌现行为的基本原理,从微观规则到宏观涌现。这包括:理解如何从微观层次的规则中获得宏观描述;开发新的和扩展现有的模型;应用和扩展数学技术和计算机工具;与其他科学家合作,将这些想法应用于数学,物理和生物学问题。不同学科之间有很大的相互促进的潜力。我为这个领域带来了独特的视角,在PDE方法(渐近,局部模式......)方面拥有广泛的专业知识。以及多粒子动力系统。主要副主题是(1)偏微分方程背景下的涌现行为;(2)噪声驱动的粒子模型及其宏观极限;(3)在生物学和自治系统中的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kolokolnikov, Theodore其他文献
THE STABILITY OF STEADY-STATE HOT-SPOT PATTERNS FOR A REACTION-DIFFUSION MODEL OF URBAN CRIME
- DOI:
10.3934/dcdsb.2014.19.1373 - 发表时间:
2014-07-01 - 期刊:
- 影响因子:1.2
- 作者:
Kolokolnikov, Theodore;Ward, Michael J.;Wei, Juncheng - 通讯作者:
Wei, Juncheng
Localized outbreaks in an S-I-R model with diffusion
- DOI:
10.1007/s00285-020-01466-1 - 发表时间:
2020-01-16 - 期刊:
- 影响因子:1.9
- 作者:
Gai, Chunyi;Iron, David;Kolokolnikov, Theodore - 通讯作者:
Kolokolnikov, Theodore
Spot deformation and replication in the two-dimensional Belousov-Zhabotinski reaction in a water-in-oil microemulsion
- DOI:
10.1103/physrevlett.98.188303 - 发表时间:
2007-05-04 - 期刊:
- 影响因子:8.6
- 作者:
Kolokolnikov, Theodore;Tlidi, Mustapha - 通讯作者:
Tlidi, Mustapha
Stability of ring patterns arising from two-dimensional particle interactions
- DOI:
10.1103/physreve.84.015203 - 发表时间:
2011-07-22 - 期刊:
- 影响因子:2.4
- 作者:
Kolokolnikov, Theodore;Sun, Hui;Bertozzi, Andrea L. - 通讯作者:
Bertozzi, Andrea L.
A minimal model of predator-swarm interactions
- DOI:
10.1098/rsif.2013.1208 - 发表时间:
2014-05-06 - 期刊:
- 影响因子:3.9
- 作者:
Chen, Yuxin;Kolokolnikov, Theodore - 通讯作者:
Kolokolnikov, Theodore
Kolokolnikov, Theodore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kolokolnikov, Theodore', 18)}}的其他基金
Mathematics of emergent behaviour and applications
突发行为数学及其应用
- 批准号:
RGPIN-2019-05191 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Mathematics of emergent behaviour and applications
突发行为数学及其应用
- 批准号:
RGPIN-2019-05191 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Mathematics of emergent behaviour and applications
突发行为数学及其应用
- 批准号:
RGPIN-2019-05191 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Collective behavior in complex systems
复杂系统中的集体行为
- 批准号:
RGPIN-2014-03807 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Collective behavior in complex systems
复杂系统中的集体行为
- 批准号:
RGPIN-2014-03807 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Collective behavior in complex systems
复杂系统中的集体行为
- 批准号:
RGPIN-2014-03807 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Collective behavior in complex systems
复杂系统中的集体行为
- 批准号:
461907-2014 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Collective behavior in complex systems
复杂系统中的集体行为
- 批准号:
RGPIN-2014-03807 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Collective behavior in complex systems
复杂系统中的集体行为
- 批准号:
RGPIN-2014-03807 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Collective behavior in complex systems
复杂系统中的集体行为
- 批准号:
461907-2014 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
推广的Hubbard模型中的emergent现象研究
- 批准号:11474061
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
关于Emergent宇宙的相关研究
- 批准号:11175093
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Scale issues in connected landscapes: Resolving emergent behaviour for improved hydrologic modelling
互联景观中的规模问题:解决紧急行为以改进水文建模
- 批准号:
RGPIN-2017-03920 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Mathematics of emergent behaviour and applications
突发行为数学及其应用
- 批准号:
RGPIN-2019-05191 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Mathematics of emergent behaviour and applications
突发行为数学及其应用
- 批准号:
RGPIN-2019-05191 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Scale issues in Canadian hydrology: Resolving emergent wetland behaviour for improved hydrologic modelling of Canadian landscapes
加拿大水文学的规模问题:解决湿地的紧急行为以改进加拿大景观的水文模型
- 批准号:
518790-2018 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Postgraduate Scholarships - Doctoral
Scale issues in connected landscapes: Resolving emergent behaviour for improved hydrologic modelling
互联景观中的规模问题:解决紧急行为以改进水文建模
- 批准号:
RGPIN-2017-03920 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Mathematics of emergent behaviour and applications
突发行为数学及其应用
- 批准号:
RGPIN-2019-05191 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Scale issues in Canadian hydrology: Resolving emergent wetland behaviour for improved hydrologic modelling of Canadian landscapes
加拿大水文学的规模问题:解决湿地的紧急行为以改进加拿大景观的水文模型
- 批准号:
518790-2018 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Postgraduate Scholarships - Doctoral
Scale issues in connected landscapes: Resolving emergent behaviour for improved hydrologic modelling
互联景观中的规模问题:解决紧急行为以改进水文建模
- 批准号:
RGPIN-2017-03920 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Scale issues in Canadian hydrology: Resolving emergent wetland behaviour for improved hydrologic modelling of Canadian landscapes
加拿大水文学的规模问题:解决湿地的紧急行为以改进加拿大景观的水文模型
- 批准号:
518790-2018 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Postgraduate Scholarships - Doctoral
Scale issues in connected landscapes: Resolving emergent behaviour for improved hydrologic modelling
互联景观中的规模问题:解决紧急行为以改进水文建模
- 批准号:
RGPIN-2017-03920 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual