Statistical Methods for Complex Infectious Disease Systems
复杂传染病系统的统计方法
基本信息
- 批准号:RGPIN-2021-04292
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Studies of infectious diseases are increasingly important in Canada and around the world. Outbreaks of diseases such as COVID-19, Ebola, SARS, or foot-and-mouth disease pose direct threats to public health and agriculture industries, and/or have serious economic effects. To quickly control such disease outbreaks, it is important to understand how the disease spreads over time and what factors lead some individuals to become infected and some not. To address these issues, several individual-level mathematical models for infectious disease transmission have been developed. These models have intuitive and flexible characteristics and have been shown to accurately describe the patterns of disease spread dynamics over time and space. The parameter estimation of such models is in general carried out in a Bayesian framework, using techniques such as Markov chain Monte Carlo (MCMC), which explores the posterior distribution. The Bayesian approach offers many advantages, such as the easy incorporation of missing data information as latent variables. However, the parameter estimation from these models in a Bayesian framework are computationally intensive, requiring substantial computer time to carry out. This is especially apparent in cases with large amounts of data, a substantial proportion of missing data, or inaccuracies in the data that we wish to account for. All of these cases typically apply with infectious disease data sets. To decide how best to control an infectious disease during the course of an outbreak, results are needed quickly and updates needed often as new data are available. The purpose of this research program is therefore to: i)develop individual-level models that more accurately and reliably model disease transmission as it occurs in real settings; ii)improve the computationally intensive statistical inference process to make it more efficient, for example using Gaussian process emulation and epidemic classification techniques; iii)apply new models to data collected about various infectious diseases to answer biologically interesting questions about those diseases; iv)use computer simulation and inference to determine what sort of infectious disease data should be collected in the future to provide information most efficiently about the infection process. This proposal emphasizes that statisticians play an important role in solving problems in the analysis of large scale infectious disease data. It will also provide opportunities for training highly qualified personnel at all levels. This training has three components: methodology, computation, and analysis of real life data. The outcomes of this research program are expected to aid stakeholders in health care services, and to aid in making proper decisions based on quick and correct statistical inferences in other areas of applications such plant and animal disease.
在加拿大和世界各地,传染病研究日益重要。COVID-19、埃博拉、SARS或口蹄疫等疾病的爆发对公共卫生和农业构成直接威胁,并/或产生严重的经济影响。为了迅速控制这种疾病的爆发,重要的是要了解疾病是如何随着时间的推移传播的,以及哪些因素导致一些人被感染,而另一些人没有被感染。为了解决这些问题,已经开发了几个传染病传播的个人层面数学模型。这些模型具有直观和灵活的特点,并已被证明可以准确地描述疾病随时间和空间的传播动态模式。这些模型的参数估计通常在贝叶斯框架中进行,使用马尔可夫链蒙特卡罗(MCMC)等技术,探索后验分布。贝叶斯方法提供了许多优点,例如很容易将缺失的数据信息合并为潜在变量。然而,在贝叶斯框架中,这些模型的参数估计计算量很大,需要大量的计算机时间来执行。这在数据量大、缺失数据的比例很大或我们希望解释的数据不准确的情况下尤其明显。所有这些案例通常适用于传染病数据集。为了决定如何在疫情爆发期间最好地控制传染病,需要迅速获得结果,并在获得新数据时经常进行更新。因此,该研究计划的目的是:i)开发个人层面的模型,更准确、更可靠地模拟真实环境中发生的疾病传播;ii)改进计算密集型统计推断过程,使其更有效,例如使用高斯过程仿真和流行病分类技术;(三)将新模型应用于收集到的关于各种传染病的数据,以回答关于这些疾病的生物学上有趣的问题;Iv)利用计算机模拟和推理来确定今后应收集何种传染病数据,以最有效地提供有关感染过程的信息。该建议强调统计学家在解决大规模传染病数据分析中的问题方面发挥重要作用。它还将提供培训各级高度合格人员的机会。这个培训有三个组成部分:方法论、计算和对现实生活数据的分析。这项研究计划的成果有望帮助医疗保健服务的利益相关者,并有助于在植物和动物疾病等其他应用领域根据快速和正确的统计推断做出适当的决定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pokharel, Gyanendra其他文献
Patient preferences for maintenance therapy in Crohn's disease: A discrete-choice experiment
- DOI:
10.1371/journal.pone.0227635 - 发表时间:
2020-01-16 - 期刊:
- 影响因子:3.7
- 作者:
Hazlewood, Glen S.;Pokharel, Gyanendra;Kaplan, Gilaad G. - 通讯作者:
Kaplan, Gilaad G.
Pokharel, Gyanendra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pokharel, Gyanendra', 18)}}的其他基金
Statistical Methods for Complex Infectious Disease Systems
复杂传染病系统的统计方法
- 批准号:
RGPIN-2021-04292 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Complex Infectious Disease Systems
复杂传染病系统的统计方法
- 批准号:
DGECR-2021-00351 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
- 批准号:
2310450 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Statistical methods for identifying pleiotropy between complex human traits
识别复杂人类特征之间多效性的统计方法
- 批准号:
10646535 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Novel statistical genetics methods to unravel polygenic interactions in complex traits
揭示复杂性状中多基因相互作用的新统计遗传学方法
- 批准号:
10713965 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Developing computational, statistical and machine learning methods to uncover biological mechanisms of complex phenotypes
开发计算、统计和机器学习方法来揭示复杂表型的生物学机制
- 批准号:
RGPIN-2021-04062 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for identifying unobserved structure in complex ecological and environmental data
识别复杂生态和环境数据中未观察到的结构的统计方法
- 批准号:
DGECR-2022-00456 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Launch Supplement
Statistical Challenges and Methods in the Analysis of High Dimensional and Complex Structured Data
高维复杂结构化数据分析中的统计挑战和方法
- 批准号:
RGPIN-2018-05475 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for identifying unobserved structure in complex ecological and environmental data
识别复杂生态和环境数据中未观察到的结构的统计方法
- 批准号:
RGPIN-2022-04750 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Sampling Designs and Statistical Methods for the Analysis of Complex Life History and Genetic Data
用于分析复杂生活史和遗传数据的抽样设计和统计方法
- 批准号:
RGPIN-2020-05528 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Complex Life History Studies
复杂生活史研究的统计方法
- 批准号:
RGPIN-2017-04055 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual