Lattice Models of Polymers: Entanglement Complexity and Confined Geometries

聚合物的晶格模型:纠缠复杂性和受限几何形状

基本信息

  • 批准号:
    RGPIN-2020-06339
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

A polymer is any large molecule made up of repeated molecular units called monomers. The lattice models of Statistical Mechanics have proved to be simple but powerful for studying phase-change behaviour and equilibrium properties for polymers in solution. For this, a polymer chain is represented by a walk on a grid or lattice so that each monomer in the chain is one step apart from its neighbours. Advantageously, the resulting lattice polymer has flexibility (it can take on a variety of shapes) and the requirement that two monomers cannot be in the same location (the excluded volume effect) is easily incorporated. Although highly simplified, it is useful for predicting and understanding any properties which are a consequence of the fact that a polymer is a large flexible molecule. At the same time, these models are of intrinsic mathematical interest due to the wealth of challenging open mathematical questions, many of which have arisen from polymer physics and more recently from molecular biology. For example, enzymes act on DNA to remove entanglements in order for normal cellular processes to proceed. To study this, a model in which two ends of a lattice polymer chain are joined into a ring can be used to represent the large-scale structure of the DNA molecule, and models of enzyme action on DNA have been developed. At the same time, there is interest in understanding the entanglement complexity of polymers confined in nanochannels or capsids (such as DNA in a viral capsid) or when stretched as in single-molecule atomic force microscopy experiments. There are open questions for all these cases regarding the connection between how the polymer is stretched or packed and its entanglement complexity. Lattice models for investigating these questions have been developed. I plan to continue my research on lattice models of polymers using combinatorial analysis and computer simulations in order to better understand enzyme action on DNA and the entanglement complexity of confined polymers. In doing so, I am committed to promoting equity, diversity, and inclusion in my research program. I am aware that women and minorities are historically underrepresented in the sciences and will therefore encourage applications from women, members of visible minorities, indigenous persons, and persons with disabilities to join my research team. The results of this research program will be of interest to molecular biologists and polymer chemists. In the case of enzyme action on DNA, an improved understanding of their action has the potential to impact Canadians by leading to improved cancer treatments. At the same time, the results will add to our general understanding of lattice models of polymers and phase transitions in polymer systems.  Trainees involved in the research program will benefit from the development of critical thinking and problem-solving abilities, as well as technical, collaborative and communication skills.
聚合物是由称为单体的重复分子单元组成的任何大分子。统计力学的晶格模型已经被证明是研究聚合物在溶液中的相变行为和平衡性质的简单而有力的方法。为此,一个聚合物链被表示为在网格或晶格上行走,使得链中的每个单体与其相邻的单体相距一步。有利的是,所得到的晶格聚合物具有灵活性(它可以呈现各种形状),并且很容易结合两个单体不能在同一位置的要求(排除体积效应)。虽然高度简化,但它对于预测和理解聚合物是一个大的柔性分子这一事实的任何性质都是有用的。同时,由于大量具有挑战性的开放数学问题,这些模型具有内在的数学兴趣,其中许多问题来自聚合物物理学,最近来自分子生物学。例如,酶作用于DNA以去除缠结,以便正常的细胞过程继续进行。为了研究这一点,可以使用晶格聚合物链两端连接成环的模型来表示DNA分子的大尺度结构,并建立了酶对DNA作用的模型。与此同时,人们对理解聚合物在纳米通道或衣壳(如病毒衣壳中的DNA)或在单分子原子力显微镜实验中拉伸时的纠缠复杂性很感兴趣。对于所有这些情况,关于聚合物如何拉伸或包装与其缠结复杂性之间的联系,都有悬而未决的问题。研究这些问题的格子模型已经被开发出来。我计划利用组合分析和计算机模拟继续研究聚合物的晶格模型,以便更好地理解酶对DNA的作用和受限聚合物的纠缠复杂性。在这样做的过程中,我致力于在我的研究项目中促进公平、多样性和包容性。我意识到,妇女和少数民族在科学领域的历史代表性不足,因此将鼓励妇女、少数民族成员、土著人和残疾人加入我的研究团队。这一研究计划的结果将引起分子生物学家和聚合物化学家的兴趣。就酶对DNA的作用而言,更好地了解它们的作用有可能通过改善癌症治疗来影响加拿大人。同时,这些结果将增加我们对聚合物晶格模型和聚合物体系相变的一般理解。参与研究计划的学员将受益于批判性思维和解决问题的能力,以及技术,合作和沟通技巧的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Soteros, Christine其他文献

Soteros, Christine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Soteros, Christine', 18)}}的其他基金

Lattice Models of Polymers: Entanglement Complexity and Confined Geometries
聚合物的晶格模型:纠缠复杂性和受限几何形状
  • 批准号:
    RGPIN-2020-06339
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Lattice Models of Polymers: Entanglement Complexity and Confined Geometries
聚合物的晶格模型:纠缠复杂性和受限几何形状
  • 批准号:
    RGPIN-2020-06339
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Lattice Models of Polymers: Entanglement Complexity and Confined Geometries
聚合物的晶格模型:纠缠复杂性和受限几何形状
  • 批准号:
    RGPIN-2015-03747
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Lattice Models of Polymers: Entanglement Complexity and Confined Geometries
聚合物的晶格模型:纠缠复杂性和受限几何形状
  • 批准号:
    RGPIN-2015-03747
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Lattice Models of Polymers: Entanglement Complexity and Confined Geometries
聚合物的晶格模型:纠缠复杂性和受限几何形状
  • 批准号:
    RGPIN-2015-03747
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Lattice Models of Polymers: Entanglement Complexity and Confined Geometries
聚合物的晶格模型:纠缠复杂性和受限几何形状
  • 批准号:
    RGPIN-2015-03747
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Lattice Models of Polymers: Entanglement Complexity and Confined Geometries
聚合物的晶格模型:纠缠复杂性和受限几何形状
  • 批准号:
    RGPIN-2015-03747
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Lattice models of polymers: entanglement complexity and phase transitions
聚合物晶格模型:纠缠复杂性和相变
  • 批准号:
    46659-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Lattice models of polymers: entanglement complexity and phase transitions
聚合物晶格模型:纠缠复杂性和相变
  • 批准号:
    46659-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Lattice models of polymers: entanglement complexity and phase transitions
聚合物晶格模型:纠缠复杂性和相变
  • 批准号:
    46659-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
  • 批准号:
    RGPIN-2019-06303
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
  • 批准号:
    RGPIN-2019-06303
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Lattice Models of Polymers: Entanglement Complexity and Confined Geometries
聚合物的晶格模型:纠缠复杂性和受限几何形状
  • 批准号:
    RGPIN-2020-06339
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
  • 批准号:
    RGPIN-2019-06303
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Lattice Models of Polymers: Entanglement Complexity and Confined Geometries
聚合物的晶格模型:纠缠复杂性和受限几何形状
  • 批准号:
    RGPIN-2020-06339
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Lattice Models of Polymers: Entanglement Complexity and Confined Geometries
聚合物的晶格模型:纠缠复杂性和受限几何形状
  • 批准号:
    RGPIN-2015-03747
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
The Statistical Mechanics of Lattice Models of Polymers
聚合物晶格模型的统计力学
  • 批准号:
    RGPIN-2019-06303
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Lattice Models of Polymers: Entanglement Complexity and Confined Geometries
聚合物的晶格模型:纠缠复杂性和受限几何形状
  • 批准号:
    RGPIN-2015-03747
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Lattice Models of Polymers: Entanglement Complexity and Confined Geometries
聚合物的晶格模型:纠缠复杂性和受限几何形状
  • 批准号:
    RGPIN-2015-03747
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Lattice models of enzyme action on confined polymers
酶对受限聚合物作用的晶格模型
  • 批准号:
    497001-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了