Multi-marginal Optimal Transport: Generative models meet Density Functional Theory

多边际最优传输:生成模型满足密度泛函理论

基本信息

  • 批准号:
    RGPIN-2022-05207
  • 负责人:
  • 金额:
    $ 7.87万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Multi-marginal Optimal Transport (MOT) underlies many key algorithms in Quantum Chemistry (QC) and Generative Models (GM). Unfortunately, current algorithms scale exponentially in the number of marginals, severely limiting practical applications. This NSERC Discovery Grant proposes an interdisciplinary research program concentrated across MOT, QC and GM, which aims to construct systematic approximations for MOT problems, design algorithms to break through computational limitations, implement these in software packages used by practitioners, and to train HQP in high-performance computing and state-of-the-art AI methods, to prepare them for jobs in computational chemistry software development and AI sector. Multi-marginal Optimal Transport (MOT) is a class of optimization problems. In its simplest form, an optimal element is sought among probability distributions pi(x_1,\dots,x_N) in R^N with marginals equal to given one-dimensional functions rho_i=rho_1(x_i), i=1,...,N. Optimality, in this setup, means that some functional F = F(pi) is minimal among all pi with such prescribed marginals pi->(rho_1,...,rho_N), and its minimal value is indicated by F[rho_1,...,rho_N] := \min{F(pi) : \pi->(rho_1,...,rho_N)}. Unfortunately, several MOT problems of interest unfortunately suffer from the so-called curse of dimensionality --- their computational complexity scales exponentially in the number N of marginals and are NP-hard. In contrast to the N=2 marginals theory, many analytical and geometrical aspects of N>2 problems are not fully understood. The lack of such a mathematical understanding limits the progress of the development of rigorous approximation functionals and, therefore, limits the development of efficient algorithms with theoretical guarantees for MOT, which are fundamental for the level of accuracy required in quantum chemistry and generative models. Faced with these challenges, I propose to develop a radically different approach to deal with computational and analytical issues in MOT. I aim to build systematic approximations of MOT functionals F_ep(pi) with a regularization strength ep>0. In that class, analytical properties of the minimizer are well understood, allowing the development of more efficient computational algorithms. The main aims of this proposal are: (1) to develop a mathematical theory of such systematic approximations, including a quantification of the approximation error; (2) to design theoretically justified and efficient algorithms based on these approximations; (3) to integrate the theory and algorithms with Computational Chemistry and Machine Learning. The program is designed to allow each PhD and PostDoc to collaborate with computational chemists and/or computer scientists. I expect that these collaborations will contribute in the PhD students' and PostDocs' training, allowing them to speak the languages of Mathematics, Chemistry and Machine Learning.
多边际最优输运(MOT)是量子化学(QC)和生成模型(GM)中许多关键算法的基础。不幸的是,目前的算法规模指数的边缘的数量,严重限制了实际应用。NSERC Discovery Grant提出了一个跨学科的研究计划,集中在MOT,QC和GM上,旨在构建MOT问题的系统近似,设计算法以突破计算限制,在从业者使用的软件包中实现这些,并在高性能计算和最先进的AI方法方面培训HQP,为他们在计算化学软件开发和人工智能领域的工作做好准备。多边际最优运输(MOT)是一类最优化问题。在其最简单的形式中,在R^N中的概率分布pi(x_1,\dots,x_N)中寻找最优元素,其边际等于给定的一维函数rho_i=rho_1(x_i),i=1,.,N.在这种设置中,最优性意味着某个泛函F = F(pi)在所有pi中是最小的,具有这样的规定的边缘pi->(rho_1,.,rho_N),并且其最小值由F[rho_1,...,rho_N]:= \min{F(pi):\pi->(rho_1,.,rho_N)}。不幸的是,几个感兴趣的MOT问题不幸地遭受所谓的维数灾难-它们的计算复杂度在边缘数N中呈指数级增长,并且是NP-难的。与N=2边缘理论相反,N>2问题的许多分析和几何方面还没有完全理解。缺乏这样的数学理解限制了严格近似泛函发展的进展,因此,限制了具有MOT理论保证的有效算法的发展,这对于量子化学和生成模型所需的精度水平至关重要。面对这些挑战,我建议开发一种完全不同的方法来处理MOT中的计算和分析问题。我的目标是建立MOT泛函F_ep(pi)的系统近似,正则化强度ep>0。在这类中,极小化的分析性质是很好的理解,允许更有效的计算算法的发展。该提案的主要目的是:(1)发展这种系统近似的数学理论,包括近似误差的量化;(2)基于这些近似设计理论上合理和有效的算法;(3)将理论和算法与计算化学和机器学习相结合。该计划旨在让每个博士和博士后与计算化学家和/或计算机科学家合作。我希望这些合作将有助于博士生和博士后的培训,使他们能够说数学,化学和机器学习的语言。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerolin, Augusto其他文献

Gerolin, Augusto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gerolin, Augusto', 18)}}的其他基金

Artificial Intelligence at the Interface of Chemistry and Mathematics
化学与数学交叉点的人工智能
  • 批准号:
    CRC-2021-00234
  • 财政年份:
    2022
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Canada Research Chairs
Multi-marginal Optimal Transport: Generative models meet Density Functional Theory
多边际最优传输:生成模型满足密度泛函理论
  • 批准号:
    DGECR-2022-00464
  • 财政年份:
    2022
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Discovery Launch Supplement
Artificial Intelligence At The Interface Of Chemistry And Mathematics
化学与数学交汇处的人工智能
  • 批准号:
    CRC-2021-00234
  • 财政年份:
    2021
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

TRIM21蛋白促进HIF1α的降解介导耳蜗血管纹缘细胞缺血再灌注致听力损伤的机制研究
  • 批准号:
    82371142
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
低纬度边缘海颗粒有机碳的卫星遥感算法研究
  • 批准号:
    41076114
  • 批准年份:
    2010
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目

相似海外基金

Discerning Boron to Salinity Ratios in Arctic Marginal Ice Zones - BAMZ
辨别北极边缘冰区的硼与盐度比率 - BAMZ
  • 批准号:
    2227313
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Standard Grant
On the Synchronism of Aesthetic Landscape and Practical Landscape toward Proposal of Marginal Landscape Theory
论审美景观与实用景观的同步性及边缘景观理论的提出
  • 批准号:
    23K04083
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Postdoctoral Fellowship: OPP-PRF: Linkages among Sea Ice, Phytoplankton, and Carbon in the Marginal Ice Zone
博士后奖学金:OPP-PRF:边缘冰区海冰、浮游植物和碳之间的联系
  • 批准号:
    2317774
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Standard Grant
Do the warming marginal seas around Japan intensify the torrential rains in Kyushu Island?
日本周边海域变暖是否加剧了九州岛的暴雨?
  • 批准号:
    23K11403
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sacredness and Prayer in the "Laughter" of W.B. Yeats and Ezra Pound in realation with Noh and Kyogen: Heroes and Marginal People
W.B.“笑声”中的神圣与祈祷
  • 批准号:
    23K00454
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Proton isotope effect as the method to repair marginal liver graft by extracorporeal perfusion
质子同位素效应体外灌注修复边缘肝移植的方法
  • 批准号:
    23H03779
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Archiving Agnes Owens: Asserting the Marginal Voice
归档艾格尼丝·欧文斯:维护边缘声音
  • 批准号:
    2887790
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Studentship
Greenland ice marginal lake evolution as a driver of ice sheet change - how important are rising lake temperatures?
格陵兰冰缘湖泊演化是冰盖变化的驱动因素——湖泊温度上升有多重要?
  • 批准号:
    NE/X013537/1
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Research Grant
Integrative approaches defining the ontogeny, maintenance, and immune response dynamics of marginal-zone B cells
定义边缘区 B 细胞个体发育、维持和免疫反应动力学的综合方法
  • 批准号:
    10660534
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
Ecological remediation of urban legacy pollution: Developing a neosoil for marginal brownfield bioremediation
城市遗留污染的生态修复:开发用于边缘棕地生物修复的新土壤
  • 批准号:
    2876941
  • 财政年份:
    2023
  • 资助金额:
    $ 7.87万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了