Methods for reliable machine learning with applications in medical imaging

可靠的机器学习方法及其在医学成像中的应用

基本信息

  • 批准号:
    RGPIN-2019-04470
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This research program involves the development of advanced computational technologies in machine learning (ML) and pattern recognition along with novel validation and evaluation techniques applied to large-scale real world medical imaging examinations in pursuit of the next generation of applications in medical diagnostics. The proposed technological and ML evaluation methods will be developed towards the creation of diagnostic and disease characterization technologies that can help improve the standard of patient care for children with neurodevelopmental disorders. Technologies developed will be evaluated with large datasets of MRI examinations of patients with a variety of conditions such as autism, attention deficit hyperactivity disorder (ADHD) and more. This will include the evaluation of proposed novel ML technology on publicly available MRI examinations and the translation of those technologies to applications based on routine clinical imaging exams (Boston Children's Hospital, Harvard Medical School, where I hold an appointment as a Research Associate). This will support larger scale evaluation of whether novel proposed technologies developed as part of this proposal have a potential role to play in a realistic clinical population. The availability of extensive routine clinical imaging examinations supports the validation of created technologies across an assortment of medical disorders (multiple sclerosis, cerebral palsy, neurofibromatosis, schizophrenia and more). With a multidisciplinary technical background (computation, medical physics) and extensive experience in interdisciplinary medical research (neuroscience, biomedical engineering) and many novel research avenues identified, I am uniquely positioned to succeed in this proposed research. This research program will involve the extraction of measurements of interest from large datasets using existing pattern recognition techniques along with the development of novel general purpose ML algorithms and validation approaches extensively assessed on large collections of brain MRI examinations. ML will be employed to combine the measurements extracted by the pattern recognition techniques to improve diagnostics and disorder characterization. This proposal will involve the use of existing techniques, as well as the development of novel ML methods that build on the pre-existing contributions of my work, including formulations which allow for a flexible decision boundary that varies with the test bias setting, providing optimizations for diagnostic testing. Rigorous statistical validation techniques will be employed and results will be confirmed with independent datasets wherever possible (autism, ADHD, etc.). Novel validation techniques will be developed to assess sample size and error consistency issues. These validation techniques will be general-purpose and thus can be used by all ML application developers.
该研究计划涉及机器学习(ML)和模式识别中先进计算技术的开发,沿着应用于大规模真实的世界医学成像检查的新型验证和评估技术,以追求下一代医学诊断应用。拟议的技术和ML评估方法将开发用于创建诊断和疾病表征技术,以帮助提高神经发育障碍儿童的患者护理标准。开发的技术将通过患有自闭症、注意缺陷多动障碍(ADHD)等各种疾病的患者的MRI检查的大型数据集进行评估。这将包括在公开的MRI检查中评估拟议的新型ML技术,并将这些技术转化为基于常规临床成像检查的应用(波士顿儿童医院,哈佛医学院,我在那里担任研究助理)。这将支持更大规模的评价,以确定作为本提案一部分开发的新申报技术是否在现实临床人群中发挥潜在作用。广泛的常规临床成像检查的可用性支持在各种医学疾病(多发性硬化症,脑瘫,神经纤维瘤病,精神分裂症等)中验证所创建的技术。凭借多学科技术背景(计算,医学物理)和跨学科医学研究(神经科学,生物医学工程)的丰富经验以及许多新的研究途径,我在这项拟议的研究中取得了成功。该研究计划将涉及使用现有的模式识别技术从大型数据集中提取感兴趣的测量结果,沿着开发新的通用ML算法和验证方法,这些算法和方法在大量的脑部MRI检查中进行了广泛的评估。ML将被用来联合收割机的模式识别技术提取的测量,以改善诊断和无序表征。该提案将涉及使用现有技术,以及开发基于我工作的现有贡献的新型ML方法,包括允许随测试偏差设置而变化的灵活决策边界的配方,为诊断测试提供优化。将采用严格的统计验证技术,并尽可能使用独立数据集(自闭症,ADHD等)确认结果。将开发新的验证技术,以评估样本量和误差一致性问题。这些验证技术将是通用的,因此可以被所有ML应用程序开发人员使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Levman, Jacob其他文献

Surface- and voxel-based brain morphologic study in Rett and Rett-like syndrome with MECP2 mutation
Regional volumetric abnormalities in pediatric autism revealed by structural magnetic resonance imaging
A morphological study of schizophrenia with magnetic resonance imaging, advanced analytics, and machine learning.
  • DOI:
    10.3389/fnins.2022.926426
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Levman, Jacob;Jennings, Maxwell;Rouse, Ethan;Berger, Derek;Kabaria, Priya;Nangaku, Masahito;Gondra, Iker;Takahashi, Emi
  • 通讯作者:
    Takahashi, Emi
Structural Magnetic Resonance Imaging-Based Brain Morphology Study in Infants and Toddlers With Down Syndrome: The Effect of Comorbidities
  • DOI:
    10.1016/j.pediatrneurol.2019.03.015
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Shiohama, Tadashi;Levman, Jacob;Takahashi, Emi
  • 通讯作者:
    Takahashi, Emi
Structural Magnetic Resonance Imaging Demonstrates Abnormal l Regionally-Differential Cortical Thickness Variability in Autism: From Newborns to Adults
  • DOI:
    10.3389/fnhum.2019.00075
  • 发表时间:
    2019-03-14
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Levman, Jacob;MacDonald, Patrick;Takahashi, Emi
  • 通讯作者:
    Takahashi, Emi

Levman, Jacob的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Levman, Jacob', 18)}}的其他基金

Methods for reliable machine learning with applications in medical imaging
可靠的机器学习方法及其在医学成像中的应用
  • 批准号:
    RGPIN-2019-04470
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Bioinformatics
生物信息学
  • 批准号:
    CRC-2016-00121
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Canada Research Chairs
Bioinformatics
生物信息学
  • 批准号:
    CRC-2016-00121
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Canada Research Chairs
Methods for reliable machine learning with applications in medical imaging
可靠的机器学习方法及其在医学成像中的应用
  • 批准号:
    RGPIN-2019-04470
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Methods for reliable machine learning with applications in medical imaging
可靠的机器学习方法及其在医学成像中的应用
  • 批准号:
    DGECR-2019-00255
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Launch Supplement
Bioinformatics
生物信息学
  • 批准号:
    CRC-2016-00121
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Canada Research Chairs
Methods for reliable machine learning with applications in medical imaging
可靠的机器学习方法及其在医学成像中的应用
  • 批准号:
    RGPIN-2019-04470
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Bioinformatics
生物信息学
  • 批准号:
    CRC-2016-00121
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Canada Research Chairs
Bioinformatics
生物信息学
  • 批准号:
    CRC-2016-00121
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Canada Research Chairs
Bioinformatics
生物信息学
  • 批准号:
    CRC-2016-00121
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Canada Research Chairs

相似海外基金

Methods for reliable machine learning with applications in medical imaging
可靠的机器学习方法及其在医学成像中的应用
  • 批准号:
    RGPIN-2019-04470
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Methods for a Simplified and Reliable Prostate Cancer MRI Exam
开发简化且可靠的前列腺癌 MRI 检查方法
  • 批准号:
    10412925
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
Development of Methods for a Simplified and Reliable Prostate Cancer MRI Exam
开发简化且可靠的前列腺癌 MRI 检查方法
  • 批准号:
    9973564
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
Development of Methods for a Simplified and Reliable Prostate Cancer MRI Exam
开发简化且可靠的前列腺癌 MRI 检查方法
  • 批准号:
    10115670
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
Methods for reliable machine learning with applications in medical imaging
可靠的机器学习方法及其在医学成像中的应用
  • 批准号:
    RGPIN-2019-04470
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Methods for reliable machine learning with applications in medical imaging
可靠的机器学习方法及其在医学成像中的应用
  • 批准号:
    DGECR-2019-00255
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Launch Supplement
Methods for reliable machine learning with applications in medical imaging
可靠的机器学习方法及其在医学成像中的应用
  • 批准号:
    RGPIN-2019-04470
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Development of reliable diagnostic and prognostic tools for multiple sclerosis via pattern discovery and analysis of magnetic resonance images with advanced machine learning methods
利用先进的机器学习方法通​​过模式发现和磁共振图像分析来开发多发性硬化症的可靠诊断和预后工具
  • 批准号:
    471795-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Postdoctoral Fellowships
Development of reliable diagnostic and prognostic tools for multiple sclerosis via pattern discovery and analysis of magnetic resonance images with advanced machine learning methods
利用先进的机器学习方法通​​过模式发现和磁共振图像分析来开发多发性硬化症的可靠诊断和预后工具
  • 批准号:
    471795-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Postdoctoral Fellowships
Development of reliable diagnostic and prognostic tools for multiple sclerosis via pattern discovery and analysis of magnetic resonance images with advanced machine learning methods
利用先进的机器学习方法通​​过模式发现和磁共振图像分析来开发多发性硬化症的可靠诊断和预后工具
  • 批准号:
    471795-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了