Research in Algebraic Combinatorics
代数组合学研究
基本信息
- 批准号:RGPIN-2017-05104
- 负责人:
- 金额:$ 2.7万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My program of research sits at the frontier of algebra and combinatorics, with specific emphasis on representation theory of finite groups and their invariants, and connections with algebraic geometry, topology, mathematical physics and statistical mechanics. One of my aims is to expand and bring together recent important developments at the frontier of four areas, namely: algebra (diagonal modules of polynomials), special functions (operators on symmetric functions), combinatorics (rectangular Dyck paths and parking functions), and knot theory (skein algebra of (m,n)-torus knot). For several years, I have been at the forefront of research in the first three of these areas, and my project sits at the very center of main open questions regarding their interactions. Moreover, there are exciting recent developments in each of these areas, and a large number of profound problems are arising. Together with my students, postdocs and collaborators, I am currently making significant progress in each of these areas. Indeed, our work has clarified many of the central questions that need to be solved in this interaction, and more recently I have explicitly outlined which main directions this endeavor should now go toward. More explicitly, my proposal is articulated around the four following main axes: 1. Combinatorics of Macdonald polynomials, related operators, and associated modules, and links with rectangular Catalan combinatorics and their connections to the elliptic Hall algebra, 2. Combinatorial and representation theoretic analogs in several sets of variables, 3. Properties of plethysms of symmetric functions, and the Foulkes conjecture.The second of these exploits ideas that I proposed a few years back concerning the expansion to multidiagonal versions of the questions that have been so fruitful in the bidiagonal case. About this, it may be worth underlining that certainly more than a hundred significant papers have appeared in top journals in relation to this case (k=2) since the mid 1990s. An expansion to the multidiagonal case (k>2) is bound to multiply this research impact, as well as give more fundamental reasons why all of this is so pregnant with significant new knowledge. I have also come up with original new techniques to construct the algebraic counterparts (modules of polynomials) for the combinatorial constructions and symmetric function objects involved in the theory. This has been a long-standing important missing part in this research area. My new approach is bound to furnish an original satisfying explanation for a fundamental leitmotif in this context: the Schur positivity of the symmetric functions involved; and explain why this positivity phenomenon is so predominant. This last aspect brings me to the last portion of my program regarding many new ways of understanding a conjecture of Foulkes that dates back almost 70 years. In particular, I propose a new and original q-analog.
我的研究项目处于代数和组合学的前沿,特别强调有限群及其不变量的表示理论,以及与代数几何、拓扑学、数学物理和统计力学的联系。我的目标之一是扩展和汇集四个领域前沿的最新重要发展,即:代数(多项式的对角线模块),特殊函数(对称函数上的算子),组合学(矩形Dyck路径和停放函数)和结理论((m,n)-环面结的串代数)。几年来,我一直处于前三个领域的研究前沿,我的项目位于关于它们相互作用的主要开放问题的中心。此外,这些领域最近都有令人兴奋的发展,并且正在产生大量深刻的问题。与我的学生、博士后和合作者一起,我目前在这些领域都取得了重大进展。事实上,我们的工作已经澄清了在这种相互作用中需要解决的许多核心问题,最近我明确地概述了这一努力现在应该朝着哪些主要方向发展。更明确地说,我的建议是围绕以下四个主轴阐述的:麦克唐纳多项式的组合学、相关算子和相关模,以及与矩形Catalan组合学的联系及其与椭圆Hall代数的联系,2。3.若干变量集的组合与表示理论类比。对称函数体积的性质及Foulkes猜想。第二个是利用我几年前提出的想法,将在双对角线情况下卓有成效的问题扩展到多对角线版本。关于这一点,可能值得强调的是,自20世纪90年代中期以来,肯定有一百多篇重要的论文出现在顶级期刊上,涉及到这个案例(k=2)。扩展到多对角线情况(k>2)必然会增加这项研究的影响,并给出更根本的原因,为什么所有这些都孕育着重要的新知识。我还提出了原创的新技术,为理论中涉及的组合结构和对称函数对象构造代数对应物(多项式的模块)。这一直是该研究领域长期缺失的重要部分。我的新方法一定会为这个背景下的一个基本主题提供一个令人满意的原始解释:所涉及的对称函数的舒尔正性;并解释为什么这种积极的现象如此盛行。最后一个方面把我带到了我的计划的最后一部分,关于理解福克斯猜想的许多新方法,这个猜想可以追溯到近70年前。特别地,我提出了一个新的和原始的q模拟。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bergeron, François其他文献
Combinatorics of triangular partitions
三角形分割的组合学
- DOI:
10.54550/eca2023v3s1r1 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Bergeron, François;Mazin, Mikhail - 通讯作者:
Mazin, Mikhail
Bergeron, François的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bergeron, François', 18)}}的其他基金
Research in Algebraic Combinatorics
代数组合学研究
- 批准号:
RGPIN-2017-05104 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Research in Algebraic Combinatorics
代数组合学研究
- 批准号:
RGPIN-2017-05104 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Research in Algebraic Combinatorics
代数组合学研究
- 批准号:
RGPIN-2017-05104 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Research in Algebraic Combinatorics
代数组合学研究
- 批准号:
RGPIN-2017-05104 - 财政年份:2018
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Research in Algebraic Combinatorics
代数组合学研究
- 批准号:
RGPIN-2017-05104 - 财政年份:2017
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Research in Algebraic Combinatorics
代数组合学研究
- 批准号:
9041-2012 - 财政年份:2016
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Research in Algebraic Combinatorics
代数组合学研究
- 批准号:
9041-2012 - 财政年份:2015
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Research in Algebraic Combinatorics
代数组合学研究
- 批准号:
9041-2012 - 财政年份:2014
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Research in Algebraic Combinatorics
代数组合学研究
- 批准号:
9041-2012 - 财政年份:2013
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Research in Algebraic Combinatorics
代数组合学研究
- 批准号:
9041-2012 - 财政年份:2012
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
- 批准号:
2302174 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
- 批准号:
2302173 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
Research in Algebraic Combinatorics
代数组合学研究
- 批准号:
RGPIN-2017-05104 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Research in Algebraic Combinatorics
代数组合学研究
- 批准号:
RGPIN-2017-05104 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Research in Algebraic Combinatorics
代数组合学研究
- 批准号:
RGPIN-2017-05104 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Research in Algebraic Combinatorics
代数组合学研究
- 批准号:
RGPIN-2017-05104 - 财政年份:2018
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Research in Algebraic Combinatorics
代数组合学研究
- 批准号:
RGPIN-2017-05104 - 财政年份:2017
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Research on algebraic combinatorics related to matrices and hypergeometric series and surrounding topics
与矩阵和超几何级数相关的代数组合及其周边主题的研究
- 批准号:
16K05060 - 财政年份:2016
- 资助金额:
$ 2.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research in Algebraic Combinatorics
代数组合学研究
- 批准号:
9041-2012 - 财政年份:2016
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual