Computational Methods for Verification and Validation with Applications in Mechanics
力学应用验证和确认的计算方法
基本信息
- 批准号:RGPIN-2019-07154
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational Sciences and Engineering, the discipline which focuses on computer simulations of physical phenomena and engineering systems, has gained great maturity over the years to the point that it is today widely considered for design and decision-making, either for material sciences, aerospace applications, weather-related disaster monitoring, control of manufacturing processes, etc. Yet, it is also acknowledged that confidence in computer predictions is often limited because of the imperfect knowledge of the mathematical models and their parameters. In fact, due to the complexity of the multiphysics and multiscale systems being simulated, it is, more than ever, essential to ensure that predictions be quantitatively reliable. The computational models need to be extensively subjected to verification and validation processes in order to assess the credibility of the simulation results. Code and Solution Verification is the process of determining whether computational models produce numerical results with sufficient accuracy for meaningful comparisons with experimental data. Validation is the process of determining the accuracy by which mathematical models can predict physical events with respect to a decision that has to be made. The topics of verification and validation are not new, but approaches and methodologies currently available still pertain more to an art, especially in the case of validation, than to a scientific approach. The proposed research program aims at developing new theories, methodologies, and algorithms for predictive modeling, and will concentrate on the following objectives: 1) Construction of adaptive and verified reduced-order models (low rank approximations, proper orthogonal decomposition, etc.) with respect to specific quantities of interest, the goal being to obtain surrogate models for fast and accurate statistical characterization of output quantities of interest; 2) Use of machine learning methods to enhance the information content of datasets for parameter inference and model validation in the case of scarce data (e.g. neural networks, deep learning, model selection, cross-validation, resampling methods, etc.); 3) Application of graphical methods to assess the relevance in the choice of validation scenarios and data to properly exercise a model. The methodologies developed in the project will be tested on several applications of engineering interest. Outcomes of the project will be a collection of computational tools for verification and validation of computational models. The originality of the work will be the development of reduced-order models tailored to the calculation of quantities of interest and the integration of machine learning techniques to enhance the reliability of validation processes. The project should have an impact not only in the field of computational mechanics but also in any other engineering applications that heavily rely on computer simulations of complex physical phenomena.
计算科学与工程是一门以物理现象和工程系统的计算机模拟为重点的学科,多年来已经发展得非常成熟,目前已被广泛考虑用于设计和决策,无论是材料科学、航空航天应用、与天气有关的灾害监测、制造过程的控制等。然而,人们也承认,由于对数学模型及其参数的不完善了解,人们对计算机预测的信心往往是有限的。事实上,由于被模拟的多物理和多尺度系统的复杂性,确保预测在数量上可靠比以往任何时候都更加重要。计算模型需要经过广泛的验证和确认过程,以评估模拟结果的可信度。代码和解决方案验证是确定计算模型产生的数值结果是否具有足够的精度,以便与实验数据进行有意义的比较的过程。验证是确定数学模型可以预测与必须做出的决定有关的物理事件的准确性的过程。核查和验证的主题并不新鲜,但目前可用的办法和方法仍然更多地属于一门艺术,特别是在验证的情况下,而不是科学方法。该研究计划旨在开发用于预测建模的新理论、新方法和新算法,并将集中于以下目标:1)构建自适应且经过验证的降阶模型(低阶近似、适当的正交分解等)。对于感兴趣的具体数量,目标是获得替代模型,以快速和准确地统计表征感兴趣的输出量;2)在数据稀缺的情况下,使用机器学习方法来增强用于参数推理和模型验证的数据集的信息含量(例如,神经网络、深度学习、模型选择、交叉验证、重采样方法等);3)应用图形方法来评估验证场景和数据的选择的相关性,以便适当地使用模型。在该项目中开发的方法将在几个具有工程意义的应用中进行测试。该项目的成果将是一系列用于验证和确认计算模型的计算工具。这项工作的原创性将是开发为计算感兴趣的数量而量身定做的降阶模型,并整合机器学习技术以提高验证过程的可靠性。该项目不仅应该在计算力学领域产生影响,而且还应该在严重依赖复杂物理现象的计算机模拟的任何其他工程应用中产生影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prudhomme, Serge其他文献
A mathematical framework for the analysis and comparison of contact detection methods for ellipses and ellipsoids.
- DOI:
10.1007/s40571-022-00460-2 - 发表时间:
2022 - 期刊:
- 影响因子:3.3
- 作者:
Kheradmand, Elham;Laforest, Marc;Prudhomme, Serge - 通讯作者:
Prudhomme, Serge
Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth
- DOI:
10.1007/s00285-012-0595-9 - 发表时间:
2013-12-01 - 期刊:
- 影响因子:1.9
- 作者:
Hawkins-Daarud, Andrea;Prudhomme, Serge;Oden, J. Tinsley - 通讯作者:
Oden, J. Tinsley
Error control for molecular statics problems
- DOI:
10.1615/intjmultcompeng.v4.i5-6.60 - 发表时间:
2006-01-01 - 期刊:
- 影响因子:1.4
- 作者:
Prudhomme, Serge;Bauman, Paul T.;Oden, J. Tinsley - 通讯作者:
Oden, J. Tinsley
A fast contact detection method for ellipsoidal particles
- DOI:
10.1002/nag.3197 - 发表时间:
2021-02-12 - 期刊:
- 影响因子:4
- 作者:
Kheradmand, Elham;Prudhomme, Serge;Laforest, Marc - 通讯作者:
Laforest, Marc
A force-based coupling scheme for peridynamics and classical elasticity
- DOI:
10.1016/j.commatsci.2012.05.016 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:3.3
- 作者:
Seleson, Pablo;Beneddine, Samir;Prudhomme, Serge - 通讯作者:
Prudhomme, Serge
Prudhomme, Serge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prudhomme, Serge', 18)}}的其他基金
Computational Methods for Verification and Validation with Applications in Mechanics
力学应用验证和确认的计算方法
- 批准号:
RGPIN-2019-07154 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Development and validation of particle models for DEM simulations of the dynamical behavior of saturated soils
用于饱和土壤动态行为 DEM 模拟的粒子模型的开发和验证
- 批准号:
522310-2017 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Collaborative Research and Development Grants
Computational Methods for Verification and Validation with Applications in Mechanics
力学应用验证和确认的计算方法
- 批准号:
RGPIN-2019-07154 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Development and validation of particle models for DEM simulations of the dynamical behavior of saturated soils
用于饱和土壤动态行为 DEM 模拟的粒子模型的开发和验证
- 批准号:
522310-2017 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Collaborative Research and Development Grants
Computational Methods for Verification and Validation with Applications in Mechanics
力学应用验证和确认的计算方法
- 批准号:
RGPIN-2019-07154 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Development and validation of particle models for DEM simulations of the dynamical behavior of saturated soils
用于饱和土壤动态行为 DEM 模拟的粒子模型的开发和验证
- 批准号:
522310-2017 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Collaborative Research and Development Grants
Verification, Validation, and Uncertainty Quantification for Predictive Modeling in Computational Mechanics
计算力学预测建模的验证、确认和不确定性量化
- 批准号:
436199-2013 - 财政年份:2017
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Verification, Validation, and Uncertainty Quantification for Predictive Modeling in Computational Mechanics
计算力学预测建模的验证、确认和不确定性量化
- 批准号:
436199-2013 - 财政年份:2016
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Ellipsoidal Particle Modeling for Computer Simulation of Sediment Liquefaction
用于沉积物液化计算机模拟的椭球粒子模型
- 批准号:
499494-2016 - 财政年份:2016
- 资助金额:
$ 3.35万 - 项目类别:
Engage Grants Program
Verification, Validation, and Uncertainty Quantification for Predictive Modeling in Computational Mechanics
计算力学预测建模的验证、确认和不确定性量化
- 批准号:
436199-2013 - 财政年份:2015
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
- 批准号:
2319400 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
- 批准号:
2319399 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
- 批准号:
23K03232 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
- 批准号:
2404036 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Analysis and Verification of Translation Methods for the Purpose of Acquiring Scientific Literacy in Translated Scientific Books in the Early Meiji Period
明治初期科技书籍翻译中以获取科学素养为目的的翻译方法分析与验证
- 批准号:
23K12849 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CarbonTrace – the innovative application of BunkerTrace biomarkers to provide well-to-wake traceability and sustainability verification for low- and zero-carbon fuels and feedstocks for the maritime sector. Developing novel application methods.
CarbonTrace — BunkerTrace 生物标记物的创新应用,为海事部门的低碳和零碳燃料和原料提供井到尾可追溯性和可持续性验证。
- 批准号:
10076292 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Grant for R&D
Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
- 批准号:
2409796 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
- 批准号:
2319401 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Standard Grant
Development of restricted selection methods and their verification
限制选择方法的开发及其验证
- 批准号:
22H02491 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exploration of adaptive functions of metacognition: hypothesis exploration using constructive methods and its experiential verification
元认知适应性功能的探索:利用建构性方法进行假设探索及其经验验证
- 批准号:
22H01100 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)