Mechanical-Alloying-Assisted Syntheses of Cobalt-Containing Multi-Component Systems and MAX Phases

含钴多组分系统和 MAX 相的机械合金化辅助合成

基本信息

  • 批准号:
    538050-2018
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Mechanical alloying (MA) is a materials-processing method that involves the repeated welding, fracturing, and rewelding of a mixture of powder particles, generally in a high energy ball mill, to produce a controlled, very fine microstructure, which results in high performance of the final material. MA-assisted-synthesis is characterized by a combination of mechanical alloying the mixed powder to very fine structure and then sintering. In this research two categories of material will be synthesized utilizing the MA technique. The first is cobalt-containing multi-component system (MCS), which is designed based on the combined concept of cobalt-based superalloy and high-entropy alloy (HEA). The former is also known as Stellite alloy, displaying exceptional properties such as high temperature strength, corrosion, oxidation, wear and erosion resistance, due to the unique chemical composition. The latter is composed of at least five elements in equiatomic or near equiatomic composition, exhibiting various excellent properties such as high hardness, good ductility and high temperature stability, by introduction of extra entropy to stabilize the structure. Different from traditional HEAs, the proposed cobalt-containing MCS alloys still have Co as the major element alloying with Cr, W, Mo, Ni, Mn, etc., but Co content will be reduced compared to Stellite alloys, thus lowering the cost of the alloys. MAX phases are layered ternary carbides and nitrides, making property combination of metallic and ceramic materials, which are popularly employed in extreme environments. In this research, MAX phases, including Cr2AlC, Ti3SiC2, Ti3AlC2, Ti2AlC, and Ti2AlN, potentially for nuclear applications, will also be synthesized with MA to improve their performance by creating very fine grained microstructures. The MA mixed powders will be solidified via special sintering processes such as spark plasma sintering and laser cladding, which enable to produce very fine grained microstructures due to rapid heating and cooling. It is expected that these novel materials synthesized by the advanced process possess superior performance to the existing materials from conventional methods, becoming emerging advanced materials for various industrial applications.
机械合金化(MA)是一种材料加工方法,涉及粉末颗粒混合物的重复焊接,破碎和粉碎,通常在高能球磨机中,以产生受控的,非常精细的微观结构,从而导致最终材料的高性能。MA辅助合成的特征在于将混合粉末机械合金化至非常精细的结构然后烧结的组合。在本研究中,将利用MA技术合成两类材料。第一种是基于钴基高温合金和高熵合金相结合的概念设计的含钴多元合金体系(MCS)。前者也被称为钨铬钴合金,由于其独特的化学成分,显示出优异的性能,如高温强度,耐腐蚀性,抗氧化性,耐磨性和耐侵蚀性。后者由至少五种等原子或近等原子组成的元素组成,通过引入额外的熵来稳定结构,表现出各种优异的性能,如高硬度,良好的延展性和高温稳定性。与传统的HEAs不同,所提出的含钴MCS合金仍然具有Co作为与Cr、W、Mo、Ni、Mn等合金化的主要元素,但与司太立合金相比,Co含量将减少,从而降低合金的成本。MAX相是层状三元碳化物和氮化物,使金属和陶瓷材料的性能结合,广泛应用于极端环境。在这项研究中,MAX相,包括Cr2AlC,Ti3SiC2,Ti3AlC2,Ti2AlC和Ti2AlN,潜在的核应用,也将与MA合成,以提高其性能,通过创建非常细的晶粒显微组织。MA混合粉末将通过特殊的烧结工艺(例如放电等离子烧结和激光熔覆)固化,这使得能够由于快速加热和冷却而产生非常细的晶粒显微组织。预计通过先进工艺合成的这些新型材料将具有比传统方法现有材料更优越的上级性能,成为各种工业应用的新兴先进材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liu, RongR其他文献

Liu, RongR的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

A strategy to exfoliate layered transition-metal borides into 2D nanocrystals (MBene) through alloying the transition-metal sites
通过过渡金属位点合金化将层状过渡金属硼化物剥离成二维纳米晶体(MBene)的策略
  • 批准号:
    24K08211
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding the Structural Transformations of Aluminum Foil Anodes during Electrochemical De(alloying) for Sustainable Lithium-ion Batteries
了解可持续锂离子电池电化学脱(合金)过程中铝箔阳极的结构转变
  • 批准号:
    2321486
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an Ultrasonic Atomization and Alloying Platform for Additive Manufacturing Research and Education
MRI:收购用于增材制造研究和教育的超声波雾化和合金化平台
  • 批准号:
    2216352
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
CAS: Understanding the Role of External Constraint on Electrochemical (De)alloying Mechanisms
CAS:了解外部约束对电化学(脱)合金机制的作用
  • 批准号:
    2209202
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
Alloying of additive elements and their nanoparticle deposition based on the design of the interface between Ti alloys and oxide layers
基于钛合金与氧化层界面设计的添加元素合金化及其纳米颗粒沉积
  • 批准号:
    22H01831
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Hot-rolled high-strength steels with leaner alloying concepts
采用精简合金概念的热轧高强度钢
  • 批准号:
    538214-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Collaborative Research and Development Grants
Improving the hydrogen embrittlement resistance of quench and tempered high strength steels used as oil country tubular goods with niobium alloying additions
添加铌合金提高油井管材用调质高强度钢的抗氢脆性能
  • 批准号:
    556549-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Alliance Grants
SBIR Phase I: Production of Low-Cost Ti Alloys by Direct Reduction and Alloying
SBIR第一阶段:通过直接还原和合金化生产低成本钛合金
  • 批准号:
    2051641
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
Alloying for impurity tolerance
合金化以提高杂质耐受性
  • 批准号:
    2621673
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Studentship
Mechanical-Alloying-Assisted Syntheses of Cobalt-Containing Multi-Component Systems and MAX Phases
含钴多组分系统和 MAX 相的机械合金化辅助合成
  • 批准号:
    538050-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了