Improving aerodynamic control strategies for low Reynolds number airfoils

改进低雷诺数翼型的气动控制策略

基本信息

  • 批准号:
    RGPIN-2022-03071
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Standard airfoil profiles are designed for optimal aerodynamic performance at high speed based on the Reynolds number, a ratio of flow inertia and fluid viscosity. For example, a Boeing 747 operates at a Reynolds number of approximately 80 million while an insect might have a Reynolds number of roughly 1000. Operating airfoils at low Reynolds number (below one million) is of interest in many engineering applications including low-speed unmanned aerial vehicles, wind turbines, and low-speed/high-altitude aircraft; however, airfoil performance is significantly reduced. For wind turbine installation in most of Ontario, this is a concern as there are limited locations with high enough wind speeds to produce power. Flow separation on airfoils, the detachment of the boundary layer from a surface into a wake, is particularly prevalent at low Reynolds numbers due to the interaction of the laminar boundary layer on the suction surface where flow pressure increases in the flow direction (an adverse pressure gradient). The momentum contained in the boundary layer is often unable to withstand the forces imposed by the adverse pressure gradient, which causes the flow to separate. The use of periodic excitation, i.e., active flow control, applied locally at the surface to mitigate flow separation and restore the aerodynamic performance of stalled airfoils is a technique that has been applied with varying degrees of success for several years. Because these devices are flat to the airfoil surface, no geometric drag is introduced. Since 2005, our lab has been studying the synthetic jet actuator (SJA) as a candidate control method. The SJA has a vibrating diaphragm mounted in a cavity with an orifice/slot leading to the surface where control is desired. Deformation of the diaphragm causes the working fluid to be alternately ingested and expelled by the cavity, thereby adding momentum (but not mass) to the flow. The main difficulties faced with this technology and, particularly the approach proposed here, is that despite the relat
标准翼型是根据雷诺数、流动惯性和流体粘度之比设计的,以实现高速下的最佳空气动力学性能。例如,波音747在大约8000万的雷诺数下运行,而昆虫可能具有大约1000的雷诺数。在低雷诺数(低于一百万)下操作翼型在许多工程应用中是令人感兴趣的,包括低速无人驾驶飞行器、风力涡轮机和低速/高空飞行器;然而,翼型性能显著降低。对于安大略大部分地区的风力涡轮机安装来说,这是一个问题,因为风速足够高的地方有限,无法发电。由于吸力面上层流边界层的相互作用,翼型上的流动分离,即边界层从表面分离成尾流,在低雷诺数下特别普遍,吸力面上的流动压力沿流动方向增加(逆压梯度)。边界层中包含的动量通常无法承受由逆压梯度施加的力,这导致流动分离。使用周期性激励,即,在表面局部应用以减轻流动分离并恢复失速翼型的空气动力学性能的主动流动控制是一种多年来已经应用并取得不同程度成功的技术。因为这些装置与翼型表面是平的,所以不会引入几何阻力。自2005年以来,我们的实验室一直在研究合成射流激励器(SJA)作为一种候选的控制方法。SJA有一个安装在腔体中的振动膜,腔体中有一个孔/槽,通向需要控制的表面。隔膜的变形导致工作流体被腔体交替地吸入和排出,从而向流动增加动量(但不是质量)。 这项技术面临的主要困难,特别是这里提出的方法,是,尽管关系,

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sullivan, Pierre其他文献

A Piezoactuated Droplet-Dispensing Microfluidic Chip
  • DOI:
    10.1109/jmems.2009.2036866
  • 发表时间:
    2010-02-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Ahamed, Mohammed Jalal;Gubarenko, Sergey I.;Sullivan, Pierre
  • 通讯作者:
    Sullivan, Pierre

Sullivan, Pierre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sullivan, Pierre', 18)}}的其他基金

Microfluidic tools for improved sensing and dispensing
用于改进传感和分配的微流体工具
  • 批准号:
    RGPIN-2016-06189
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Microfluidic tools for improved sensing and dispensing
用于改进传感和分配的微流体工具
  • 批准号:
    RGPIN-2016-06189
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Hot water distribution improvement for multi-resident buildings
改善多住户建筑的热水分配
  • 批准号:
    528389-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Microfluidic tools for improved sensing and dispensing
用于改进传感和分配的微流体工具
  • 批准号:
    RGPIN-2016-06189
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Hot water distribution improvement for multi-resident buildings
改善多住户建筑的热水分配
  • 批准号:
    528389-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Improvement of experimental capabilities in aerodynamic control
气动控制实验能力提升
  • 批准号:
    RTI-2019-00323
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Research Tools and Instruments
Microfluidic tools for improved sensing and dispensing
用于改进传感和分配的微流体工具
  • 批准号:
    RGPIN-2016-06189
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Microfluidic tools for improved sensing and dispensing
用于改进传感和分配的微流体工具
  • 批准号:
    RGPIN-2016-06189
  • 财政年份:
    2017
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Pressure Transducers for High Temperature Environments
适用于高温环境的压力传感器
  • 批准号:
    519908-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Engage Grants Program
Miniaturized particle sizer for field application
适合现场应用的小型粒度仪
  • 批准号:
    469719-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants

相似海外基金

Plasma-assisted aerodynamic control around external nozzle with combustion in high-speed air
外部喷嘴周围的等离子体辅助空气动力学控制,在高速空气中燃烧
  • 批准号:
    23H01611
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Distributed Electric Propulsion For Aerodynamic Efficiency and Control
用于提高空气动力效率和控制的分布式电力推进
  • 批准号:
    571051-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Alliance Grants
Aerodynamic drag reduction, from science to control strategies in aerospace and sport
空气动力减阻,从科学到航空航天和体育运动的控制策略
  • 批准号:
    RGPIN-2018-05860
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Distributed Electric Propulsion For Aerodynamic Efficiency and Control
用于提高空气动力效率和控制的分布式电力推进
  • 批准号:
    573045-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    University Undergraduate Student Research Awards
High Fidelity Dynamic Aeroelasticity Response Analysis and Active Vibration Attenuation and Control of High Precision Ground Antennas Subject to Aerodynamic Gust
气动阵风作用下高精度地面天线的高保真动态气动弹性响应分析及主动减振与控制
  • 批准号:
    530880-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Distributed Electric Propulsion For Aerodynamic Efficiency and Control
用于提高空气动力效率和控制的分布式电力推进
  • 批准号:
    571051-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Alliance Grants
Aerodynamic drag reduction, from science to control strategies in aerospace and sport
空气动力减阻,从科学到航空航天和体育运动的控制策略
  • 批准号:
    RGPIN-2018-05860
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Bioinspired, Adaptive, and Self-Deploying Flaps for Distributed Aerodynamic Flow Control
用于分布式气动流量控制的仿生、自适应和自展开襟翼
  • 批准号:
    2029028
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Standard Grant
Aerodynamic drag reduction, from science to control strategies in aerospace and sport
空气动力减阻,从科学到航空航天和体育运动的控制策略
  • 批准号:
    RGPIN-2018-05860
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
High Fidelity Dynamic Aeroelasticity Response Analysis and Active Vibration Attenuation and Control of High Precision Ground Antennas Subject to Aerodynamic Gust
气动阵风作用下高精度地面天线的高保真动态气动弹性响应分析及主动减振与控制
  • 批准号:
    530880-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了