Tissue-specific roles of mitochondrial dynamics in stress resistance and longevity
线粒体动力学在抗应激和长寿中的组织特异性作用
基本信息
- 批准号:RGPIN-2019-04302
- 负责人:
- 金额:$ 2.7万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mitochondria are a part of the cell that is responsible for the production of energy. Mitochondria also perform several other critical functions within the cell and are essential for life in most organisms. While mitochondria have been shown to influence aging, the relationship between mitochondrial shape, mitochondrial function and longevity is poorly defined. Under normal conditions, mitochondria are dynamic organelles: they continuously split off of larger mitochondrial networks, in a process known as mitochondrial fission, and rejoin those networks, in a process known as mitochondrial fusion. Combined these processes are known as mitochondrial dynamics. Experiments in a genetic model organism called C. elegans have shown that decreasing mitochondrial fission can lead to increased lifespan. Since similar observations have been made in yeast, and decreased mitochondrial fragmentation has been associated with longevity in long-lived human centenarians, this suggests that altering mitochondrial shape in order to form larger mitochondrial networks can increase longevity, and that this response is conserved across species. Currently, the mechanism by which altering mitochondrial dynamics can influence longevity is not known. Furthermore, the role of mitochondrial dynamics in an organism's response to stress, and how this might contribute to lifespan, is incompletely defined. We hypothesize that decreasing mitochondrial fragmentation increases lifespan through alterations in mitochondrial function. We further hypothesize that increasing an organism's capacity for fission and fusion through the simultaneous overexpression of fission and fusion proteins will increase mitochondrial health and longevity. To test these hypotheses, we will use C. elegans models to define the contribution of mitochondrial dynamics to stress resistance and longevity through the completion of two research projects. In Project 1, we will determine how different types of stress affect mitochondrial shape and how changing mitochondrial shape affects stress resistance. In Project 2, we will also define the conditions under which changes in mitochondrial dynamics can increase lifespan and explore the underlying mechanisms. By using C. elegans, we are able to examine mitochondrial morphology in a live animal, and to study the effect of modulating mitochondrial dynamics on whole organism phenotypes such as stress resistance and lifespan. Defining the relationship between mitochondrial dynamics, stress resistance and longevity, and elucidating the underlying mechanisms, will advance our knowledge about the role of mitochondrial morphology and function in aging and resistance to stress. Overall this work will increase our understanding of the aging process.
线粒体是细胞的一部分,负责产生能量。线粒体还在细胞内执行其他几个关键功能,并且是大多数生物体中生命所必需的。虽然线粒体已被证明会影响衰老,但线粒体形状,线粒体功能和寿命之间的关系尚不清楚。在正常情况下,线粒体是动态的细胞器:它们在称为线粒体分裂的过程中不断地从较大的线粒体网络中分裂出来,并在称为线粒体融合的过程中重新加入这些网络。结合这些过程被称为线粒体动力学。 在一种名为C.线虫已经表明减少线粒体分裂可以导致寿命延长。由于在酵母中也进行了类似的观察,并且线粒体碎片减少与长寿的人类百岁老人的寿命有关,这表明改变线粒体形状以形成更大的线粒体网络可以增加寿命,并且这种反应在物种中是保守的。目前,改变线粒体动力学可以影响寿命的机制尚不清楚。此外,线粒体动力学在生物体对压力的反应中的作用,以及这如何有助于寿命,还没有完全确定。我们推测,减少线粒体碎片增加寿命通过改变线粒体功能。我们进一步假设,通过同时过表达裂变和融合蛋白来增加生物体的裂变和融合能力将增加线粒体的健康和寿命。为了验证这些假设,我们将使用C。通过完成两个研究项目,建立了线虫模型,以确定线粒体动力学对抗逆性和寿命的贡献。在项目1中,我们将确定不同类型的压力如何影响线粒体形状,以及线粒体形状的变化如何影响应激抵抗力。在项目2中,我们还将定义线粒体动力学变化可以增加寿命的条件,并探索潜在的机制。利用C.通过对线虫的研究,我们能够检查活体动物中的线粒体形态,并研究调节线粒体动力学对整个生物体表型(如应激抗性和寿命)的影响。确定线粒体动力学,抗应激和长寿之间的关系,并阐明潜在的机制,将推进我们对线粒体形态和功能在衰老和抗应激中的作用的认识。总的来说,这项工作将增加我们对衰老过程的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VanRaamsdonk, Jeremy其他文献
VanRaamsdonk, Jeremy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VanRaamsdonk, Jeremy', 18)}}的其他基金
Tissue-specific roles of mitochondrial dynamics in stress resistance and longevity
线粒体动力学在抗应激和长寿中的组织特异性作用
- 批准号:
RGPIN-2019-04302 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Tissue-specific roles of mitochondrial dynamics in stress resistance and longevity
线粒体动力学在抗应激和长寿中的组织特异性作用
- 批准号:
RGPIN-2019-04302 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Tissue-specific roles of mitochondrial dynamics in stress resistance and longevity
线粒体动力学在抗应激和长寿中的组织特异性作用
- 批准号:
DGECR-2019-00485 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Launch Supplement
Tissue-specific roles of mitochondrial dynamics in stress resistance and longevity
线粒体动力学在抗应激和长寿中的组织特异性作用
- 批准号:
RGPIN-2019-04302 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
新生儿坏死性小肠结肠炎中去泛素化酶USP15调控ILC3分化损伤肠道粘膜屏障的致病机制研究
- 批准号:82371711
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
花胶鱼类物种Species-specific PCR和Multiplex PCR鉴定体系研究
- 批准号:31902373
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Dravet综合征基因突变分析及突变来源研究
- 批准号:81171221
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
睾丸特异性新基因TSC29的表达调控机制及其功能研究
- 批准号:81170613
- 批准年份:2011
- 资助金额:54.0 万元
- 项目类别:面上项目
RNA结合蛋白CUG-BP1对于mRNA降解的调控机制研究
- 批准号:31000570
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
新生隐球菌减数分裂特异性基因ISC10的生理功能研究
- 批准号:30970130
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
寻找精神分裂症的调节性遗传变异
- 批准号:30870899
- 批准年份:2008
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Mechanistic roles of the basement membrane mechanics in cellular morphodynamics and tissue patterning of the pre-gastrulating embryo
基底膜力学在原肠胚形成前细胞形态动力学和组织模式中的作用
- 批准号:
10392887 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Mechanistic roles of the basement membrane mechanics in cellular morphodynamics and tissue patterning of the pre-gastrulating embryo
基底膜力学在原肠胚形成前细胞形态动力学和组织模式中的作用
- 批准号:
10617195 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Tissue-specific roles of mitochondrial dynamics in stress resistance and longevity
线粒体动力学在抗应激和长寿中的组织特异性作用
- 批准号:
RGPIN-2019-04302 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Tissue-specific roles of FXR in CVD and NASH
FXR 在 CVD 和 NASH 中的组织特异性作用
- 批准号:
10461065 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Tissue-specific roles of FXR in CVD and NASH
FXR 在 CVD 和 NASH 中的组织特异性作用
- 批准号:
10262919 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Tissue-specific roles of FXR in CVD and NASH
FXR 在 CVD 和 NASH 中的组织特异性作用
- 批准号:
10683976 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Tissue-specific roles of mitochondrial dynamics in stress resistance and longevity
线粒体动力学在抗应激和长寿中的组织特异性作用
- 批准号:
RGPIN-2019-04302 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Tissue-specific roles of mitochondrial dynamics in stress resistance and longevity
线粒体动力学在抗应激和长寿中的组织特异性作用
- 批准号:
DGECR-2019-00485 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Launch Supplement
Tissue-specific roles of mitochondrial dynamics in stress resistance and longevity
线粒体动力学在抗应激和长寿中的组织特异性作用
- 批准号:
RGPIN-2019-04302 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
From the Gut to the Brain - Tissue specific roles for Tumour Necrosis Factor Family Members in Immunity
从肠道到大脑 - 肿瘤坏死因子家族成员在免疫中的组织特异性作用
- 批准号:
368302 - 财政年份:2017
- 资助金额:
$ 2.7万 - 项目类别:
Operating Grants