Synaptopodins Role in Synaptic Plasticity and Neuronal Circuitry
突触足蛋白在突触可塑性和神经元回路中的作用
基本信息
- 批准号:RGPIN-2020-06373
- 负责人:
- 金额:$ 3.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The connections between neurons, called synapses, are designed to rapidly and efficiently relay signals from one neuron to another. Such connections need to be stable in order to preserve important information while at the same time have enough flexibility to accommodate new information. Adaptation of synaptic networks during development and in response to injury or learning occurs through a continuous process of synapse formation and elimination. At least two distinct mechanisms play a central role in these processes: one involves a selective stabilization of synapses through activity-dependent mechanisms and a second involves modifications of synapse turnover and dynamics to allow network rewiring. The molecular mechanisms underlying these different aspects of synaptic structural plasticity are still largely unknown. My team have been investigating the mechanisms involved in why certain synapses are stable while others are more plastic. In the central nervous system, the majority of excitatory synapses are contained within dendritic protrusions called dendritic spines that have different shapes and synaptic strengths. The spines permit separation of the site of synaptic transmission from the dendritic shaft, which allows synapse-specific inputs and signal processing. Beyond the obvious variation of spine shape, intracellular components are heterogeneously distributed and can influence how a spine will functionally respond to plasticity-inducing stimuli and remodel morphologically. Interestingly a subset of spines within the brain contains a complex endoplasmic reticulum (ER)-based organelle called the spine apparatus (SA). The SA is usually localized in the spine neck or at the base of the spine head and consists of laminar ER stacks with intervening electron-dense plates, connected to the main ER network and colocalizes with synaptopodin, an actin-binding protein and a marker for the SA. This structure serves as a calcium store, and is important for NMDA-dependent synaptic plasticity and homeostatic scaling in of the dentate gyrus (mechanism unknown). The SA contains the protein synaptopodin. Together, the presence or absence of the SA and synaptopodin can thus profoundly affect how a spine will react to synaptic transmission. However, it is still unclear if synaptopodin is involved in scaling other synapses or other facets of synaptic plasticity, such as synapse rewiring and what the mechanism. In this Discovery Grant we will build on preliminary data and in house tools to determine how synaptopodin prevents homeostatic scaling and if it is involved on other forms of plasticity. This research program will clarify the rules that govern information storage and rewiring of neuronal circuitry. The proposal will allow 3 graduate students to learn advanced optical, electrophysiology and biochemical techniques, and an undergraduate to learn imaging, reconstruction and western blotting, thus providing an ideal setting for the training of HQP.
神经元之间的连接称为突触,旨在快速有效地将信号从一个神经元传递到另一个神经元。这种连接需要稳定,以便保存重要信息,同时具有足够的灵活性来容纳新信息。在发育过程中以及对损伤或学习的响应中,突触网络的适应通过突触形成和消除的连续过程发生。至少有两种不同的机制在这些过程中发挥了核心作用:一个涉及通过活动依赖性机制选择性稳定突触,第二个涉及修改突触周转和动态,以允许网络重新布线。突触结构可塑性的这些不同方面的分子机制仍然是未知的。我的团队一直在研究为什么某些突触是稳定的,而另一些突触更具可塑性。在中枢神经系统中,大多数兴奋性突触包含在称为树突棘的树突突起内,树突棘具有不同的形状和突触强度。棘允许将突触传递的位点与树突轴分离,这允许突触特异性输入和信号处理。除了脊柱形状的明显变化之外,细胞内成分是不均匀分布的,并且可以影响脊柱如何在功能上对可塑性诱导刺激做出反应并在形态上重塑。有趣的是,大脑中的棘亚群包含一个复杂的基于内质网(ER)的细胞器,称为棘器(SA)。SA通常位于脊柱颈部或脊柱头部的基部,由层状ER堆叠和居间的电子致密板组成,连接到主要的ER网络,并与突触足蛋白(synaptopodin)共定位,突触足蛋白是肌动蛋白结合蛋白和SA的标记物。该结构作为钙储存,并且对于NMDA依赖的突触可塑性和齿状回的稳态缩放是重要的(机制未知)。SA含有蛋白质synaptopodin。因此,SA和突触蛋白的存在或不存在可以深刻地影响脊柱对突触传递的反应方式。然而,目前尚不清楚突触足蛋白是否参与缩放其他突触或突触可塑性的其他方面,如突触重新布线及其机制。在这项发现补助金中,我们将建立在初步数据和内部工具的基础上,以确定突触足蛋白如何防止稳态缩放,以及它是否涉及其他形式的可塑性。这项研究计划将阐明管理信息存储和神经元电路重新布线的规则。该项目将允许3名研究生学习先进的光学、电生理和生物化学技术,一名本科生学习成像、重建和蛋白质印迹,从而为培养HQP提供理想的环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mckinney, Anne其他文献
Mckinney, Anne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mckinney, Anne', 18)}}的其他基金
Synaptopodins Role in Synaptic Plasticity and Neuronal Circuitry
突触足蛋白在突触可塑性和神经元回路中的作用
- 批准号:
RGPIN-2020-06373 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Synaptopodins Role in Synaptic Plasticity and Neuronal Circuitry
突触足蛋白在突触可塑性和神经元回路中的作用
- 批准号:
RGPIN-2020-06373 - 财政年份:2020
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Using mathematics to disentangle the role of synaptic communication
用数学来阐明突触通讯的作用
- 批准号:
MR/X034240/1 - 财政年份:2024
- 资助金额:
$ 3.06万 - 项目类别:
Fellowship
Role of Tau and Synapsin in clustering distinct synaptic vesicle pools
Tau 和突触蛋白在不同突触小泡池聚类中的作用
- 批准号:
DP230102278 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Projects
Role of SUMOylation in Mitochondrial/Synaptic Axis Dysfunction Induced by Abnormal Tau in FTD
SUMO 化在 FTD 异常 Tau 诱导的线粒体/突触轴功能障碍中的作用
- 批准号:
10779264 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Role of synaptic density in mediating the relation between social disconnection and late-life suicide risk
突触密度在调节社会脱节与晚年自杀风险之间关系中的作用
- 批准号:
10598338 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Uncovering the role of SAP97 in synaptic function and schizophrenia.
揭示 SAP97 在突触功能和精神分裂症中的作用。
- 批准号:
10736790 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
The role of beta-secretase 1 (BACE1) in modulating excitatory synaptic and circuit function and behavior
β-分泌酶 1 (BACE1) 在调节兴奋性突触和回路功能和行为中的作用
- 批准号:
10607846 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Role of thalamic mGluR1 in aberrant synaptic of the central neural circuit after peripheral nerve injury
丘脑 mGluR1 在周围神经损伤后中枢神经回路突触异常中的作用
- 批准号:
23K14303 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidating the dynamic role of PTPsigma in synaptic nano-organization and NMDA receptor function
阐明 PTPsigma 在突触纳米组织和 NMDA 受体功能中的动态作用
- 批准号:
10606077 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Role of lateral habenula in methamphetamine TAAR1-mediated synaptic plasticity and aversion
外侧缰核在甲基苯丙胺 TAAR1 介导的突触可塑性和厌恶中的作用
- 批准号:
10733665 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Role of semaphorin 3A in synaptic transmission in the adult mouse hippocampus.
信号蛋白 3A 在成年小鼠海马突触传递中的作用。
- 批准号:
RGPIN-2022-05311 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




