Stochastic, discrete modelling of in vitro and in vivo virus infections

体外和体内病毒感染的随机、离散模型

基本信息

  • 批准号:
    RGPIN-2022-03774
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Context: While experimentation alone drives advances in virology, it has its limitations. Even within the relatively well-controlled environment of an in vitro cell culture, a virus infection is a complex, dynamical system. Disrupting a single mechanism experimentally can trigger several others, making it hard to isolate its function based on observations alone. There is also often an urgency to virology (need for antivirals, vaccines), making solution-driven research a priority over, and at the expense of, building an understanding of basic cell-virus interactions. Our research in the field of virophysics aims to fill these gaps through developing quantitative descriptions (i.e. mathematical and/or computer models, hereafter MCMs) of the key mechanisms at play during a virus infection. Our work is physics in its description and approach (and should be evaluated as such), but the systems it describes are virological in nature. Approach: Our MCMs represent the number of cells and virus particles (virions) as continuous variables, e.g. one virion infects 0.2 cells, and describe the deterministic, mean-field (MF) behaviour of what is in reality a discrete, stochastic (DS) system: one virion infects one cell (or not) 20% (or 80%) of the time. The proposed work builds on our well-established and validated MF-MCM frameworks with the overall goal to improve experimental design and result interpretation through rational, MCM-aided approaches. Objectives: To develop and apply a DS version of our MF-MCMs to identify and correct failures of the MF assumption in everyday virology to: evaluate and improve experiments meant to count infectious virions; resolve how the number of infectious virions in a sample relates to the number of infections it can cause; determine how virion infection failures and partial, abortive infections impact virus yield in co-infected cells; and explore how stochastic events over the course of a respiratory virus infection, such as coughing, alter its severity and pattern of spread within the human respiratory tract. More generally, through these objectives we aim to improve interpretation, statistical analysis, and visualization of experimental data in virology. Impact: This work could alter how MCMs use and interpret infectious virus concentrations measured experimentally over the time course of a virus infection. The ability to distinguish between a virus strain with a high rate of virion production and a low rate of cell infection per virion, and the opposite, can tell us about: what common replication process(es) might link all viruses that share one strategy over the other; or the replication bottleneck that should be targeted by antivirals. It could fundamentally alter how we view, quantify, and compare virus strain fitness or the efficacy and mode of action of antiviral interventions.
背景:虽然实验本身推动了病毒学的进步,但它也有其局限性。即使在相对可控的体外细胞培养环境中,病毒感染也是一个复杂的、动态的系统。在实验上扰乱一种机制可能会引发其他几种机制,这使得仅凭观察就很难分离出其功能。病毒学通常也很紧迫(需要抗病毒药物和疫苗),使解决方案驱动的研究成为优先事项,而不是建立对基本细胞-病毒相互作用的理解。我们在病毒物理领域的研究旨在通过对病毒感染期间发挥作用的关键机制进行定量描述(即数学和/或计算机模型,以下简称MCM)来填补这些空白。我们的工作就其描述和方法而言是物理学(应该这样评价),但它所描述的系统本质上是病毒学的。方法:我们的MCM将细胞和病毒粒子(病毒粒子)的数量表示为连续变量,例如一个病毒粒子感染0.2个细胞,并描述实际上是离散的随机(DS)系统的确定性、平均场(MF)行为:一个病毒粒子感染一个细胞(或不感染)20%(或80%)的时间。拟议的工作建立在我们良好建立和验证的MF-MCM框架的基础上,总体目标是通过Rational、MCM辅助的方法来改进实验设计和结果解释。目的:开发和应用我们的MF-MCMS的DS版本,以确定和纠正日常病毒学中MF假设的错误:评估和改进旨在计数传染性病毒粒子的实验;解决样本中感染病毒粒子的数量与其可能导致的感染数量的关系;确定病毒粒子感染失败和部分流产感染如何影响共感染细胞中的病毒产量;以及探索呼吸道病毒感染过程中的随机事件,如咳嗽,如何改变其严重性和在人类呼吸道内传播的模式。更广泛地说,通过这些目标,我们的目标是改进病毒学实验数据的解释、统计分析和可视化。影响:这项工作可能会改变MCM使用和解释在病毒感染过程中通过实验测量的感染性病毒浓度的方式。区分具有高病毒粒子生成率和低病毒粒子细胞感染率的病毒株的能力可以告诉我们:什么共同的复制过程可能将共享一种策略的所有病毒连接在另一种策略之上;或者抗病毒药物应该针对的复制瓶颈。它可能从根本上改变我们看待、量化和比较病毒株适合性或抗病毒干预的有效性和作用模式的方式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Beauchemin, Catherine其他文献

Short-term efficacy of latanoprostene bunod for the treatment of open-angle glaucoma and ocular hypertension: a systematic literature review and a network meta-analysis.
  • DOI:
    10.1136/bjophthalmol-2020-317262
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Harasymowycz, Paul;Royer, Catherine;Cui, Amy Xianying;Barbeau, Martin;Jobin-Gervais, Katherine;Mathurin, Karine;Lachaine, Jean;Beauchemin, Catherine
  • 通讯作者:
    Beauchemin, Catherine
The impact of memantine in combination with acetylcholinesterase inhibitors on admission of patients with Alzheimer's disease to nursing homes: cost-effectiveness analysis in France.
  • DOI:
    10.1007/s10198-013-0523-y
  • 发表时间:
    2014-11
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Touchon, Jacques;Lachaine, Jean;Beauchemin, Catherine;Granghaud, Anna;Rive, Benoit;Bineau, Sebastien
  • 通讯作者:
    Bineau, Sebastien
Kinetics of influenza A virus infection in humans
  • DOI:
    10.1128/jvi.01623-05
  • 发表时间:
    2006-08-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Baccam, Prasith;Beauchemin, Catherine;Perelson, Alan S.
  • 通讯作者:
    Perelson, Alan S.
Probing the effects of the well-mixed assumption on viral infection dynamics
  • DOI:
    10.1016/j.jtbi.2006.03.014
  • 发表时间:
    2006-09-21
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Beauchemin, Catherine
  • 通讯作者:
    Beauchemin, Catherine
Clinical and Economic Characteristics of Patients With Fibromyalgia Syndrome
  • DOI:
    10.1097/ajp.0b013e3181cf599f
  • 发表时间:
    2010-05-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Lachaine, Jean;Beauchemin, Catherine;Landry, Pierre-Alexandre
  • 通讯作者:
    Landry, Pierre-Alexandre

Beauchemin, Catherine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Beauchemin, Catherine', 18)}}的其他基金

Mathematical and computer models of viral infection dynamics within a host or a cell culture
宿主或细胞培养物内病毒感染动态的数学和计算机模型
  • 批准号:
    355837-2013
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and computer models of viral infection dynamics within a host or a cell culture
宿主或细胞培养物内病毒感染动态的数学和计算机模型
  • 批准号:
    355837-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and computer models of viral infection dynamics within a host or a cell culture
宿主或细胞培养物内病毒感染动态的数学和计算机模型
  • 批准号:
    355837-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and computer models of viral infection dynamics within a host or a cell culture
宿主或细胞培养物内病毒感染动态的数学和计算机模型
  • 批准号:
    355837-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical modelling of influenza viral infections
流感病毒感染的理论模型
  • 批准号:
    355837-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical modelling of influenza viral infections
流感病毒感染的理论模型
  • 批准号:
    355837-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical modelling of influenza viral infections
流感病毒感染的理论模型
  • 批准号:
    355837-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical modelling of influenza viral infections
流感病毒感染的理论模型
  • 批准号:
    355837-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical modelling of influenza viral infections
流感病毒感染的理论模型
  • 批准号:
    355837-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
A spatial model for influenza A viral infections
甲型流感病毒感染的空间模型
  • 批准号:
    318623-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral

相似国自然基金

离散谱聚合与谱廓受限的传输理论与技术的研究
  • 批准号:
    60972057
  • 批准年份:
    2009
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

Options for Increasing Plasma Supply in Canada: A Health Economic Preference and Modelling Study
增加加拿大血浆供应的选择:健康经济偏好和建模研究
  • 批准号:
    465809
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Fellowship Programs
Advanced Methodologies for Real-Time Discrete Event Modelling and Simulation
实时离散事件建模和仿真的先进方法
  • 批准号:
    RGPIN-2022-05133
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling COVID-19-Related Nursing Workloads using Discrete Event Simulation
使用离散事件模拟对 COVID-19 相关护理工作负载进行建模
  • 批准号:
    565583-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Envisioned world problems with functional approaches: Functional Analysis Resonance Method and Discrete-Event Simulation modelling for system design, verification, and improvement
使用功能方法设想世界问题:用于系统设计、验证和改进的功能分析共振方法和离散事件仿真建模
  • 批准号:
    21F21757
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Advanced Methodologies for Real-Time Discrete Event Modelling and Simulation
实时离散事件建模和仿真的先进方法
  • 批准号:
    RGPIN-2015-06204
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling human motor control with online discrete event systems
使用在线离散事件系统对人体运动控制进行建模
  • 批准号:
    535286-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Synthetic Rock Mass (SRM) modelling Incorporating Realistic 3D Discrete Fracture Network (DFN) for Advanced Rock Engineering
合成岩体 (SRM) 建模结合真实 3D 离散断裂网络 (DFN) 进行高级岩石工程
  • 批准号:
    560390-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alliance Grants
Assessment of Kinematic Stability for Open Pit Mines Through Integration of Discrete Fracture Network Models and 3D Geological Modelling Software
通过离散裂缝网络模型和 3D 地质建模软件的集成评估露天矿的运动稳定性
  • 批准号:
    553418-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Modelling human motor control with online discrete event systems
使用在线离散事件系统对人体运动控制进行建模
  • 批准号:
    535286-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Advanced Methodologies for Real-Time Discrete Event Modelling and Simulation
实时离散事件建模和仿真的先进方法
  • 批准号:
    RGPIN-2015-06204
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了