Understanding The Universe Through Beyond The Standard Model Physics

通过超越标准模型物理学来理解宇宙

基本信息

  • 批准号:
    SAPIN-2022-00024
  • 负责人:
  • 金额:
    $ 2.99万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Subatomic Physics Envelope - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The building blocks of our universe are elementary particles, like electrons, photons, and quarks inside the proton and neutron. The properties and interactions of these particles are described by a theory called the Standard Model (SM) of particle physics. The SM works very well in explaining many phenomena in our universe. However there are many observations the SM cannot explain. My research program will address the following shortcomings of the SM. 1- Most of the elementary particles acquire their masses by interacting with the Higgs particle. Neutrinos do not interact with the Higgs particle in the SM. However neutrinos also have mass as was shown at Sudbury Neutrino Observatory. (Canadian physicist Arthur McDonald shared the 2015 Nobel Prize in physics for this discovery.) This is a clear sign of the need for physics beyond the SM. I will address this mystery by exploring the interactions of new particles in supersymmetric theories, which are extensions of the SM. I will also study ways of discovering these new theories at high energy physics experiments like the Large Hadron Collider (LHC). 2- The SM predicts that for every "particle" there is an "antiparticle" with equal mass and opposite quantum charges. Researchers produce and study these antiparticles at particle physics experiments. However there is almost no antimatter in our universe. This glaring puzzle is called the matter-antimatter asymmetry. I will study new particle physics models to explain the origins of this asymmetry. One of the new physics models I will study will connect the generation of the matter-antimatter asymmetry to the physics that gives mass to neutrinos. I will also explore ways to discover these new theories using particle colliders as well as cosmological observations. 3- The SM cannot account for dark matter, which makes up 80% of the matter in our universe. We know dark matter exists due to the gravity it exerts on stars in galaxies. However it does not interact much, if at all, with SM particles. Hence our knowledge about it is very little. My research involves exploring new physics models that can explain the existence and abundance of dark matter. I am especially interested in possible dark matter interactions with neutrinos, which can affect how galaxies formed in the early universe. My research will explore how we can detect these interactions via astrophysical observations. Canada is an integral part of the high energy physics community, with leading discoveries that further our understanding about our universe. My group will contribute to this cutting edge research agenda.
我们宇宙的基石是基本粒子,如质子和中子中的电子、光子和夸克。这些粒子的性质和相互作用由称为粒子物理学标准模型(SM)的理论描述。SM可以很好地解释我们宇宙中的许多现象。然而,有许多观察SM无法解释。我的研究计划将解决SM的以下缺点。 1-大多数基本粒子通过与希格斯粒子相互作用获得质量。中微子不与SM中的希格斯粒子相互作用。然而,中微子也有质量,正如萨德伯里中微子天文台所显示的那样。(加拿大物理学家亚瑟·麦克唐纳因这一发现分享了2015年诺贝尔物理学奖。)这是一个明确的迹象,表明需要超越SM的物理学。我将通过探索超对称理论中新粒子的相互作用来解决这个谜团,超对称理论是SM的扩展。我还将研究在大型强子对撞机(LHC)等高能物理实验中发现这些新理论的方法。 2-SM预言,对于每一个“粒子”,都有一个质量相等、量子电荷相反的“反粒子”。研究人员在粒子物理实验中产生和研究这些反粒子。然而,我们的宇宙中几乎没有反物质。这个令人眼花缭乱的难题被称为物质-反物质不对称。我将研究新的粒子物理模型来解释这种不对称性的起源。我将要研究的一个新物理模型将把物质-反物质不对称性的产生与赋予中微子质量的物理学联系起来。我还将探索如何发现这些新的理论,使用粒子对撞机以及宇宙学观测。 3-SM无法解释暗物质,暗物质占我们宇宙物质的80%。我们知道暗物质的存在是由于它对星系中的恒星施加的引力。然而,它与SM粒子的相互作用并不多,如果有的话。因此,我们对它的了解很少。我的研究涉及探索新的物理模型,可以解释暗物质的存在和丰富。我对暗物质与中微子可能的相互作用特别感兴趣,这可能会影响星系在早期宇宙中的形成。我的研究将探索我们如何通过天体物理观测来检测这些相互作用。加拿大是高能物理界不可或缺的一部分,其领先的发现促进了我们对宇宙的理解。我的团队将为这一前沿研究议程做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ipek, Seyda其他文献

Dark matter freeze-out during SU(2)L confinement
SU(2)L 限制期间暗物质冻结
  • DOI:
    10.1007/jhep02(2022)047
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Howard, Jessica N.;Ipek, Seyda;Tait, Tim M.;Turner, Jessica
  • 通讯作者:
    Turner, Jessica
Dark matter freeze out during an early cosmological period of QCD confinement
暗物质在 QCD 限制的早期宇宙学时期冻结
  • DOI:
    10.1007/jhep07(2020)192
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Berger, Dillon;Ipek, Seyda;Tait, Tim M.P.;Waterbury, Michael
  • 通讯作者:
    Waterbury, Michael
Baryogenesis from flavon decays
黄酮衰变的重子生成
  • DOI:
    10.1103/physrevd.100.035011
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Chen, Mu-Chun;Ipek, Seyda;Ratz, Michael
  • 通讯作者:
    Ratz, Michael
QCD baryogenesis
QCD重子发生
  • DOI:
    10.1103/physrevd.101.055042
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Croon, Djuna;Howard, Jessica N.;Ipek, Seyda;Tait, Timothy M. P.
  • 通讯作者:
    Tait, Timothy M. P.

Ipek, Seyda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

The exploration of the primordial universe and the mystery of the dark cosmos through high-precision CMB polarimetry
通过高精度CMB偏振测量探索原始宇宙和黑暗宇宙之谜
  • 批准号:
    23H00105
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Evolution of massive galaxies in the early Universe revealed through very-wide multi-wavelength deep surveys
通过非常广泛的多波长深度调查揭示了早期宇宙中大质量星系的演化
  • 批准号:
    23H01215
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EAGER: FINDFabs: Searching The Universe of Manufactured Parts Through Proxy Geometric Representations
EAGER:FINDFabs:通过代理几何表示搜索制造零件的宇宙
  • 批准号:
    2232612
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
Expanding the universe of functional metalloproteins through AI-assisted computational design
通过人工智能辅助计算设计扩展功能金属蛋白的范围
  • 批准号:
    2137880
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
Exploring fundamental variables of gravity through early universe observations
通过早期宇宙观测探索重力的基本变量
  • 批准号:
    20K14468
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An investigation into the dark energy associated with cosmological initial conditions through observations on CMB and the large-scale structure of the universe
通过对宇宙微波背景和宇宙大尺度结构的观测,研究与宇宙学初始条件相关的暗能量
  • 批准号:
    20J13640
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Sound of the Universe: Art direction for creating an instrument through a cosmic ray detector
宇宙之声:通过宇宙射线探测器创建乐器的艺术指导
  • 批准号:
    19K13027
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploring the early Universe phenomena through cosmological magnetic fields
通过宇宙磁场探索早期宇宙现象
  • 批准号:
    19K03842
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
From the computational to the observed Universe: Studying galaxy formation through stellar kinematics and strong gravitational lensing
从计算宇宙到观测宇宙:通过恒星运动学和强引力透镜研究星系形成
  • 批准号:
    391742280
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Research Grants
Probing the Early Universe through Primordial Gravitational Waves Sourced by Matter Fields
通过物质场来源的原始引力波探测早期宇宙
  • 批准号:
    18K13537
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了