Symmetry Protected and Topological Phases in Quantum Many Body Systems
量子多体系统中的对称保护相和拓扑相
基本信息
- 批准号:RGPIN-2018-05136
- 负责人:
- 金额:$ 4.08万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Standard approaches to quantum computing are not very tolerant to qubit errors and it is not yet clear if the error rates can be made sufficiently low to build a universal fault-tolerant quantum computer. A major focus of my research is to explore an alternative approach to quantum computing, where the quantum information is inherently protected from errors and is manipulated to perform universal quantum logic. The general framework of this work is to exploit the ideas of topological insulator (TI) and symmetry-protected topological (SPT) states of matter that have been of intense recent interest in condensed matter physics. Over the course of the next five years, I will work closely with experimental groups to help develop these new states of matter, and to guide the practical implementation of intrinsically fault-tolerant quantum algorithms. The proposed activities are a unique blend of quantum information and condensed matter physics.Perhaps the best-known example of a TI corresponds to the integer quantum Hall effect, in which the conductance is expressed in terms of the Chern number, a topological quantity. It was subsequently realized that topological states can arise in a variety of settings including three-dimensional (3D) materials with no broken symmetries (the external magnetic field breaks time-reversal symmetry in the quantum Hall effect). Rather, TI phases can follow directly from of the symmetries: SPT phases. A hallmark of the topological order are localized states at the surface; for example, the quantum Hall conductance is due to these 'edge modes.' Quantum information encoded onto these modes is protected by the underlying symmetry / topology, yet remains accessible to external manipulation. Successive measurements of the edge states can yield universal quantum logic.My research will consider several experimental systems which have recently made huge strides toward the realization of SPT and TI states, such as neutral atoms in quantum cavities and optical lattices, and photonic crystals. Emphasis will be placed on systems of particles with spin-orbit coupling, whose ground states can form SPT phases under certain conditions. I will investigate systems of both ideal and interacting particles, with a priority on finding convenient experimental approaches both for the detection of topological order and for the implementation of quantum operations. The theoretical calculations will employ a combination of analytical techniques and state-of-the-art numerical methods, including group theory, algebraic graph theory, matrix-product states and density matrix renormalization group calculations in 1D and more general tensor networks in 2D and 3D, among others. The results should help lead the way toward to development of novel quantum technologies.
量子计算的标准方法对量子比特错误的容忍度不是很高,目前还不清楚错误率是否可以足够低以构建通用容错量子计算机。我研究的一个主要重点是探索量子计算的另一种方法,其中量子信息本身就受到错误保护,并被操纵以执行通用量子逻辑。这项工作的总体框架是利用拓扑绝缘体(TI)和拓扑保护(SPT)的物质状态,最近在凝聚态物理的强烈兴趣的想法。在接下来的五年里,我将与实验小组密切合作,帮助开发这些新的物质状态,并指导本质容错量子算法的实际实现。拟议的活动是量子信息和凝聚态物理学的独特融合。也许TI最著名的例子对应于整数量子霍尔效应,其中电导用陈数(一种拓扑量)表示。随后人们意识到拓扑状态可以在各种环境中出现,包括没有对称性破坏的三维(3D)材料(外部磁场破坏量子霍尔效应中的时间反转对称性)。相反,TI相可以直接从对称性中得出:SPT相。拓扑有序的一个标志是表面的局域态;例如,量子霍尔电导是由于这些边缘模式。编码到这些模式上的量子信息受到底层对称/拓扑的保护,但仍然可以被外部操纵。边缘态的连续测量可以产生通用的量子逻辑。我的研究将考虑最近在实现SPT和TI态方面取得巨大进展的几个实验系统,例如量子腔和光学晶格中的中性原子以及光子晶体。重点将放在具有自旋轨道耦合的粒子系统上,其基态在一定条件下可以形成SPT相。我将研究理想和相互作用粒子的系统,优先考虑寻找方便的实验方法来检测拓扑秩序和实现量子操作。理论计算将采用分析技术和最先进的数值方法相结合,包括群论,代数图论,矩阵乘积态和一维密度矩阵重整化群计算以及更一般的二维和三维张量网络等。这些结果应该有助于引领新型量子技术的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feder, David其他文献
Hormonal Receptors in Skeletal Muscles of Dystrophic Mdx Mice
- DOI:
10.1155/2013/604635 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:0
- 作者:
Feder, David;Barros Godoy, Ivan Rodrigues;Catteli Carvalho, Maria Helena - 通讯作者:
Catteli Carvalho, Maria Helena
Evaluation of the gastrointestinal tract in mdx mice: an experimental model of Duchenne muscular dystrophy
- DOI:
10.1111/apm.12864 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:2.8
- 作者:
Feder, David;Ierardi, Mariana;Bertassoli, Bruno Machado - 通讯作者:
Bertassoli, Bruno Machado
Exploring Chain Length Selectivity in HIC-Catalyzed Polycondensation Reactions
- DOI:
10.1021/bm901272r - 发表时间:
2010-03-01 - 期刊:
- 影响因子:6.2
- 作者:
Feder, David;Gross, Richard A. - 通讯作者:
Gross, Richard A.
Feder, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feder, David', 18)}}的其他基金
Symmetry Protected and Topological Phases in Quantum Many Body Systems
量子多体系统中的对称保护相和拓扑相
- 批准号:
RGPIN-2018-05136 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Symmetry Protected and Topological Phases in Quantum Many Body Systems
量子多体系统中的对称保护相和拓扑相
- 批准号:
RGPIN-2018-05136 - 财政年份:2020
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Symmetry Protected and Topological Phases in Quantum Many Body Systems
量子多体系统中的对称保护相和拓扑相
- 批准号:
RGPIN-2018-05136 - 财政年份:2019
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Symmetry Protected and Topological Phases in Quantum Many Body Systems
量子多体系统中的对称保护相和拓扑相
- 批准号:
RGPIN-2018-05136 - 财政年份:2018
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Quantum Information in Many-Particle Systems
多粒子系统中的量子信息
- 批准号:
261370-2013 - 财政年份:2017
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Quantum Information in Many-Particle Systems
多粒子系统中的量子信息
- 批准号:
261370-2013 - 财政年份:2016
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Quantum Information in Many-Particle Systems
多粒子系统中的量子信息
- 批准号:
261370-2013 - 财政年份:2015
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Quantum Information in Many-Particle Systems
多粒子系统中的量子信息
- 批准号:
261370-2013 - 财政年份:2014
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Quantum Information in Many-Particle Systems
多粒子系统中的量子信息
- 批准号:
261370-2013 - 财政年份:2013
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Ultracold atoms and quantum computation
超冷原子和量子计算
- 批准号:
261370-2008 - 财政年份:2012
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Topological Invariants of Symmetry-Protected Topological Phases with Time-Reversal Symmetry
具有时间反演对称性的保对称拓扑相的拓扑不变量
- 批准号:
516769-2018 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
Postgraduate Scholarships - Doctoral
Symmetry Protected and Topological Phases in Quantum Many Body Systems
量子多体系统中的对称保护相和拓扑相
- 批准号:
RGPIN-2018-05136 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Topological Invariants of Symmetry-Protected Topological Phases with Time-Reversal Symmetry
具有时间反演对称性的保对称拓扑相的拓扑不变量
- 批准号:
516769-2018 - 财政年份:2020
- 资助金额:
$ 4.08万 - 项目类别:
Postgraduate Scholarships - Doctoral
Symmetry Protected and Topological Phases in Quantum Many Body Systems
量子多体系统中的对称保护相和拓扑相
- 批准号:
RGPIN-2018-05136 - 财政年份:2020
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Symmetry protected topological states in 1D spin systems
一维自旋系统中对称性保护的拓扑态
- 批准号:
553763-2020 - 财政年份:2020
- 资助金额:
$ 4.08万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Symmetry Protected and Topological Phases in Quantum Many Body Systems
量子多体系统中的对称保护相和拓扑相
- 批准号:
RGPIN-2018-05136 - 财政年份:2019
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual
Topological Invariants of Symmetry-Protected Topological Phases with Time-Reversal Symmetry
具有时间反演对称性的保对称拓扑相的拓扑不变量
- 批准号:
516769-2018 - 财政年份:2019
- 资助金额:
$ 4.08万 - 项目类别:
Postgraduate Scholarships - Doctoral
Topological aspects of quantum many-body systems: Symmetry-protected ingappable phases and anomalies
量子多体系统的拓扑方面:对称保护的不可应用相和异常
- 批准号:
19K14608 - 财政年份:2019
- 资助金额:
$ 4.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Topological Invariants of Symmetry-Protected Topological Phases with Time-Reversal Symmetry
具有时间反演对称性的保对称拓扑相的拓扑不变量
- 批准号:
516769-2018 - 财政年份:2018
- 资助金额:
$ 4.08万 - 项目类别:
Postgraduate Scholarships - Doctoral
Symmetry Protected and Topological Phases in Quantum Many Body Systems
量子多体系统中的对称保护相和拓扑相
- 批准号:
RGPIN-2018-05136 - 财政年份:2018
- 资助金额:
$ 4.08万 - 项目类别:
Discovery Grants Program - Individual