Quantum gravity and hydrodynamics: a surprising partnership

量子引力和流体动力学:令人惊讶的合作关系

基本信息

  • 批准号:
    RGPIN-2021-02941
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This proposal is a composition of two seemingly unrelated themes. The first is the study of quantum gravity, where the quantum mechanical nature of spacetime plays a fundamental role. The second is novel arenas for hydrodynamics, the long-wavelength description of many quantum systems at finite temperature. These lines of thought in fact harmonize. The long-wavelength description of many black holes is precisely that of hydrodynamics, and in a sense, Einstein gravity is the low-energy "hydrodynamic" description of the fundamental degrees of freedom that build up spacetime. Indeed, my own research has helped weave these strands together, with developments in one arena informing new ideas for the other. There are several fundamental questions I propose to address in the realm of quantum gravity. One concerns the role of quantum mechanical fluctuations of the gravitational field that lead to wormhole geometries. These contributions appear in ordinary Einstein gravity and seem to encode information about the possible microstates of black holes. Yet there is good reason to believe that, in complete models of quantum gravity like string theory, these configurations are unstable. A major goal of my research program is to unravel the precise connection between these wormholes and black holes, and the sense in which they might contribute to observable physics. Another major objective is to formulate a consistent model of cosmology in which quantum mechanics is fully accounted for. Such a framework is certainly important to properly treat inflationary physics, during which the energy density of the universe was close to the Planck scale, but it is also important now when understanding the relation between the quantum state of the universe and observable fluctuations in the cosmic microwave background. When it comes to hydrodynamics, my main goal is to find a fluid description for so-called "fracton" phases of quantum matter, which have been postulated but yet to be discovered in the lab. Using the somewhat exotic spacetime symmetries of these theoretical materials, I will be able to find the analogue of the Navier-Stokes equations describing flows of conserved quantities at long distance. There is good reason to think that these equations will imply rather unique predictions for transport, which will assist in the discovery of fracton phases in Nature. The confirmation that such phases exist, and successful predictions of their basic properties, will be yet another triumph in the history of quantum mechanics and the role of symmetries in physical laws. My work broadly falls under the byline of advancing our fundamental knowledge of physics, of the sort that inspires scientists and laypeople alike to marvel at the universe we share.
该提案由两个看似无关的主题组成。第一个是量子引力的研究,其中时空的量子力学性质发挥着基础作用。第二个是流体动力学的新领域,即有限温度下许多量子系统的长波长描述。这些思路实际上是一致的。许多黑洞的长波长描述正是流体动力学的描述,从某种意义上说,爱因斯坦引力是对构建时空的基本自由度的低能“流体动力学”描述。事实上,我自己的研究帮助将这些线索编织在一起,一个领域的发展为另一个领域提供了新的想法。我建议在量子引力领域解决几个基本问​​题。其中之一涉及引力场量子力学涨落的作用,这种涨落导致了虫洞的几何形状。这些贡献出现在普通的爱因斯坦引力中,似乎编码了有关黑洞可能的微观状态的信息。然而,我们有充分的理由相信,在弦理论等完整的量子引力模型中,这些配置是不稳定的。我的研究计划的一个主要目标是揭示这些虫洞和黑洞之间的精确联系,以及它们对可观测物理学的贡献。另一个主要目标是建立一个一致的宇宙学模型,其中量子力学得到充分考虑。这样的框架对于正确对待暴涨物理学当然很重要,在此期间宇宙的能量密度接近普朗克尺度,但现在对于理解宇宙的量子态与宇宙微波背景中可观测的涨落之间的关系也很重要。当谈到流体动力学时,我的主要目标是找到所谓的量子物质“分形”相的流体描述,这种相已被假设但尚未在实验室中发现。利用这些理论材料中有些奇特的时空对称性,我将能够找到描述远距离守恒量流动的纳维-斯托克斯方程的类比。有充分的理由认为这些方程将暗示对输运的相当独特的预测,这将有助于发现自然界中的分形相。确认这些相的存在,并成功预测它们的基本性质,将是量子力学历史和对称性在物理定律中的作用的又一次胜利。我的工作总体上属于推进我们的物理学基础知识的范围,这种知识激励科学家和外行人对我们共同的宇宙感到惊叹。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jensen, Kristan其他文献

Aspects of hot Galilean field theory
  • DOI:
    10.1007/jhep04(2015)123
  • 发表时间:
    2015-04-22
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Jensen, Kristan
  • 通讯作者:
    Jensen, Kristan
Boundary Effective Action for Quantum Hall States
  • DOI:
    10.1103/physrevlett.116.126802
  • 发表时间:
    2016-03-21
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Gromov, Andrey;Jensen, Kristan;Abanov, Alexander G.
  • 通讯作者:
    Abanov, Alexander G.
On the coupling of Galilean-invariant field theory to curved spacetime
  • DOI:
    10.21468/scipostphys.5.1.011
  • 发表时间:
    2018-07-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Jensen, Kristan
  • 通讯作者:
    Jensen, Kristan

Jensen, Kristan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jensen, Kristan', 18)}}的其他基金

Quantum gravity and hydrodynamics: a surprising partnership
量子引力和流体动力学:令人惊讶的合作关系
  • 批准号:
    RGPIN-2021-02941
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum gravity and hydrodynamics: a surprising partnership
量子引力和流体动力学:令人惊讶的合作关系
  • 批准号:
    DGECR-2021-00160
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Tracking flood waters over Australia using space gravity data
使用空间重力数据跟踪澳大利亚的洪水
  • 批准号:
    DP240102399
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Projects
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Research Grant
Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
  • 批准号:
    2334171
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Continuing Grant
Gravity Cartography Catalyst
重力制图催化剂
  • 批准号:
    10107128
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Small Business Research Initiative
SBIR Phase I: Artificial Gravity Stabilization System for Space Habitats
SBIR 第一阶段:太空栖息地人工重力稳定系统
  • 批准号:
    2335173
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Standard Grant
Reaching new frontiers of quantum fields and gravity through deformations
通过变形达到量子场和引力的新前沿
  • 批准号:
    DP240101409
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Projects
S-TGG: A novel Tidal Gravity Generator for renewable, shoreside energy in ports and harbours with high efficiency and low environmental impact
S-TGG:一种新型潮汐重力发生器,用于港口和港口的可再生岸边能源,效率高,环境影响低
  • 批准号:
    10092293
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative R&D
Clocks and singularities in quantum gravity and quantum cosmology
量子引力和量子宇宙学中的时钟和奇点
  • 批准号:
    2907441
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Studentship
CAREER: Towards realistic halo-scale constraints on the nature of dark matter and gravity
职业:对暗物质和引力的性质进行现实的晕尺度限制
  • 批准号:
    2338388
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Continuing Grant
CAREER: Investigating the impacts of sea breeze and steep surface gravity waves on nearshore air-sea fluxes
职业:研究海风和陡峭的表面重力波对近岸海气通量的影响
  • 批准号:
    2340712
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了