Functionalized Bilayer Graphene Devices: Achieving Selectivity and Sensitivity
功能化双层石墨烯器件:实现选择性和灵敏度
基本信息
- 批准号:577147-2022
- 负责人:
- 金额:$ 3.28万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphene is an atomically-thin surface of carbon atoms with remarkable electrical transport properties that are sensitive to the nearby distribution of molecular species; this makes graphene an exciting material in the conception of sensor devices. Functionalization of the surface is however necessary to impart any selectivity to these devices, which means dressing the graphene surface with chemical groups able to capture selectively the target analyte. While various gas, ion and biomolecular sensors have been demonstrated using functionalized graphene devices, the vast majority rely on non-covalent adsorption to immobilize the functional groups onto the surface, which raises issues of stability and reproducibility. Covalent chemistry could improve immobilization by binding directly the functional groups into the carbon lattice, but this creates defects that are detrimental to the electrical conduction of the graphene. There is thus a fundamental opposition between the needs for selectivity and sensitivity in the conception of graphene sensors. To unlock this conundrum, we propose an original architecture based on functionalized bilayer graphene. In this design, covalent functional sites can be tethered to the top layer, even at high densities, while the bottom layer preserves its electrical conduction. In addition, the twist angle between the orientation of the two layers becomes a new degree of freedom in the design, unexplored in the context of sensors. In this project, our team will investigate two key challenges in the application of functionalized graphene bilayers as sensors: (1) how to control the distribution of functional sites at the surface of the top layer, and (2) how to model the sensitivity of the bottom layer to the capture of an analyte by these functional sites. To address these, our team brings together a very large range of experimental and numerical techniques, including ab initio calculations, molecular dynamics simulations, scanning probes and hyperspectral imaging, photoelectron and impedance spectroscopy as well as electrical transport measurements, that will be strategically correlated to generate a unique multidimensional understanding of the functionalized bilayer structure and the impact of the twist angle.
石墨烯是一种原子厚度很薄的碳原子表面,具有显着的电输运性质,对附近分子物种的分布非常敏感;这使得石墨烯成为传感器器件概念中的一种令人兴奋的材料。然而,为了赋予这些设备任何选择性,表面的功能化是必要的,这意味着用能够选择性捕获目标分析物的化学基团来修饰石墨烯表面。虽然各种气体、离子和生物分子传感器已经使用功能化的石墨烯器件进行了展示,但绝大多数传感器依靠非共价吸附将官能团固定在表面,这带来了稳定性和重复性的问题。共价化学可以通过将官能团直接结合到碳晶格中来改善固定化,但这会产生不利于石墨烯导电的缺陷。因此,在石墨烯传感器的概念中,对选择性和灵敏度的需求之间存在根本的对立。为了解决这一难题,我们提出了一种基于功能化双层石墨烯的原创性架构。在这种设计中,即使在高密度的情况下,共价功能位点也可以被拴在顶层,而底层保持其导电性。此外,两层方向之间的扭转角度成为设计中的一个新自由度,这在传感器的背景下是没有探索过的。在这个项目中,我们的团队将研究功能化石墨烯双层作为传感器应用的两个关键挑战:(1)如何控制顶层表面功能位点的分布,以及(2)如何模拟底层对这些功能位点捕获分析物的敏感性。为了解决这些问题,我们的团队结合了一系列非常广泛的实验和数值技术,包括从头计算、分子动力学模拟、扫描探针和高光谱成像、光电子和阻抗光谱以及电传输测量,这些技术将具有战略相关性,以产生对功能化双层结构和扭曲角影响的独特多维理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bouilly, DelphineD其他文献
Bouilly, DelphineD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Visualizing Novel Electronic Orders in Bilayer Graphene Systems
可视化双层石墨烯系统中的新型电子顺序
- 批准号:
2312311 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Continuing Grant
Understanding superconductivity in twisted bilayer graphene using in situ tunable heterostructures.
使用原位可调异质结构了解扭曲双层石墨烯的超导性。
- 批准号:
545737-2020 - 财政年份:2022
- 资助金额:
$ 3.28万 - 项目类别:
Postdoctoral Fellowships
Fabrication of and charge transport in twisted bilayer graphene transistors
扭曲双层石墨烯晶体管的制造和电荷传输
- 批准号:
575055-2022 - 财政年份:2022
- 资助金额:
$ 3.28万 - 项目类别:
University Undergraduate Student Research Awards
Observation of cyclotron resonance in twisted bilayer graphene
扭曲双层石墨烯中回旋共振的观察
- 批准号:
21K20345 - 财政年份:2021
- 资助金额:
$ 3.28万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Understanding superconductivity in twisted bilayer graphene using in situ tunable heterostructures.
使用原位可调异质结构了解扭曲双层石墨烯的超导性。
- 批准号:
545737-2020 - 财政年份:2021
- 资助金额:
$ 3.28万 - 项目类别:
Postdoctoral Fellowships
Revolution of graphite-intercalation-compound (GIC) research by highly controlled bilayer graphene
高度控制的双层石墨烯石墨插层化合物(GIC)研究的革命
- 批准号:
21K18878 - 财政年份:2021
- 资助金额:
$ 3.28万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Understanding superconductivity in twisted bilayer graphene using in situ tunable heterostructures.
使用原位可调异质结构了解扭曲双层石墨烯的超导性。
- 批准号:
545737-2020 - 财政年份:2020
- 资助金额:
$ 3.28万 - 项目类别:
Postdoctoral Fellowships
Fabrication and evaluation of Moire-angle controlled bilayer graphene
莫尔角控制双层石墨烯的制备与评价
- 批准号:
19H02602 - 财政年份:2019
- 资助金额:
$ 3.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Energy dissipation in bilayer graphene NEMS
双层石墨烯 NEMS 中的能量耗散
- 批准号:
527784-2018 - 财政年份:2018
- 资助金额:
$ 3.28万 - 项目类别:
University Undergraduate Student Research Awards
Cyclotron resonance study on the ion-gel-gated bilayer graphene
离子凝胶门控双层石墨烯的回旋共振研究
- 批准号:
16K05422 - 财政年份:2016
- 资助金额:
$ 3.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)