Weighing the stars: Data-driven stellar population modeling for the next-generation sky surveys
称量恒星:用于下一代巡天的数据驱动的恒星种群模型
基本信息
- 批准号:577225-2022
- 负责人:
- 金额:$ 3.28万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Remarkable volumes of astrophysical data are expected soon thanks to a new generation of sky surveys (e.g. Euclid, Rubin/LSST, etc.), providing unprecedented opportunities to answer key questions about dark matter and galaxy formation. These surveys will yield more than 200,000 strong gravitational lenses, two orders of magnitude greater than current samples. Such lenses are ideal tracers of dark matter in galaxies. This project aims to develop and exploit machine learning methods that perform stellar synthesis modeling of lensing galaxies. The combination of stellar population and strong lens modeling will allow us to separate the stellar and dark matter components of lenses in individual systems and, through a hierarchical inference framework, to determine population-level properties of dark matter and stellar components of galaxies, providing unique constraints on dark matter models and galaxy formation scenarios.Gravitational lensing traces the distribution of matter (dark matter and baryons combined) in lensing galaxies through the gravitational distortions they cause in images of distant sources. Separating the dark and stellar components of these galaxies is the key to testing predictions of dark matter models and understanding the baryonic physics processes in galaxy formation and evolution. This is done using stellar synthesis modeling, a procedure by which model stellar spectra are combined to fit a set of broadband images. While these models remain biased and uncertain due to various assumptions and degeneracies, recent studies have demonstrated that by combining the individual measurements of stellar synthesis with strong and weak lensing, which probe the inner and outer parts of a galaxy respectively, for a large population of strong lensing systems, it becomes possible to statistically infer unbiased measurements of dark matter properties and stellar components, allowing robust tests of dark matter and galaxy formation models. Performing this exercise for the monumental volumes of data from upcoming surveys (and even for currently available data) is intractable with traditional maximum-likelihood modeling approaches. However, recent advances have shown that machine learning can accelerate the process of lens modeling by more than 10 million times, allowing the computationally intractable lens modeling problem to be solved in minutes. Our team is currently building methods and pipelines to do just that. We will expand upon these efforts by obtaining stellar masses and building a hierarchical inference framework that combines the measurements of galaxy stellar populations and lensing parameters to samples of unparalleled size in order to directly probe the time evolution of the baryonic mass fraction, the inner/outer galaxy mass ratio, and the environmental dependence of mass accretion. Among the anticipated all-sky surveys, the Euclid and Rubin Observatories should begin operations in 2023 and 2024, making this project most timely. The recently launched James Webb Space Telescope will also provide a unique characterization of the evolution of stellar populations with time, a necessary input for our project. Our interdisciplinary team is composed of experts in strong+weak gravitational lensing analysis, stellar population modeling, and machine learning, forming a unique collaboration of experts for each aspect of this exciting project.
由于新一代的巡天(例如欧几里得、鲁宾/LSST等),预计很快就会有大量的天体物理数据,提供了前所未有的机会来回答有关暗物质和星系形成的关键问题。这些调查将产生超过20万个强引力透镜,比目前的样本大两个数量级。这种透镜是星系中暗物质的理想示踪剂。该项目旨在开发和利用机器学习方法,对透镜星系进行恒星合成建模。恒星群体和强透镜建模的结合将使我们能够分离单个系统中透镜的恒星和暗物质成分,并通过分层推理框架,确定星系的暗物质和恒星成分的群体水平特性,引力透镜跟踪物质的分布,(暗物质和重子结合)在透镜星系通过引力扭曲,他们造成的图像遥远的来源。分离这些星系的暗物质和恒星成分是检验暗物质模型预测和理解星系形成和演化中重子物理过程的关键。这是使用恒星合成建模,模型恒星光谱相结合,以适应一组宽带图像的过程。虽然由于各种假设和简并性,这些模型仍然存在偏差和不确定性,但最近的研究表明,通过将恒星合成的单独测量与强透镜和弱透镜相结合,分别探测星系的内部和外部,对于大量的强透镜系统,可以统计推断暗物质属性和恒星成分的无偏测量,允许对暗物质和星系形成模型进行强有力的测试。对于即将到来的调查中的大量数据(甚至是当前可用的数据),使用传统的最大似然建模方法进行此练习是难以处理的。然而,最近的进展表明,机器学习可以将透镜建模的过程加速1000万倍以上,使计算上难以解决的透镜建模问题在几分钟内得到解决。我们的团队目前正在构建方法和管道来做到这一点。我们将扩大这些努力,获得恒星质量和建立一个层次的推理框架,结合测量星系恒星种群和透镜参数的样本无与伦比的大小,以直接探测重子质量分数的时间演化,内/外星系质量比,和质量吸积的环境依赖性。在预期的全天空调查中,欧几里得和鲁宾天文台应于2023年和2024年开始运行,使该项目最及时。最近发射的詹姆斯·韦伯太空望远镜也将提供恒星种群随时间演变的独特特征,这是我们项目的必要投入。我们的跨学科团队由强+弱引力透镜分析,恒星种群建模和机器学习方面的专家组成,为这个令人兴奋的项目的每个方面形成了独特的专家合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hezaveh, YasharY其他文献
Hezaveh, YasharY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于STARS分析的渤海营养状态转换及其生态效应研究
- 批准号:41906044
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
PGC-1α调节骨骼肌脂肪酸代谢和胰岛素抵抗的分子机制
- 批准号:81200638
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
STARS-SRF信号通路在脂代谢中的分子调节机制
- 批准号:31171131
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
From Stars to Baht: Broadening the economic impact of astronomical data handling techniques in Thailand - Phase II
从星星到泰铢:扩大泰国天文数据处理技术的经济影响 - 第二阶段
- 批准号:
ST/S002820/1 - 财政年份:2019
- 资助金额:
$ 3.28万 - 项目类别:
Research Grant
Data mining the Next Generation Transit Survey for exoplanet systems around dead stars
对死亡恒星周围系外行星系统的下一代凌日巡天进行数据挖掘
- 批准号:
2273487 - 财政年份:2019
- 资助金额:
$ 3.28万 - 项目类别:
Studentship
A legacy sample of Red Giant stars for Galactic Archaeology: joining asteroseismology, spectroscopy and Gaia data
用于银河考古学的红巨星遗留样本:结合星震学、光谱学和盖亚数据
- 批准号:
428473034 - 财政年份:2019
- 资助金额:
$ 3.28万 - 项目类别:
Research Grants
Study on evolutionary processes of the Galactic disk based on multi-dimensional data of Cepheid variable stars
基于造父变星多维数据的银盘演化过程研究
- 批准号:
18H01248 - 财政年份:2018
- 资助金额:
$ 3.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
From Stars to Baht: Broadening the economic impact of astronomical data handling techniques in Thailand
从星星到泰铢:扩大泰国天文数据处理技术的经济影响
- 批准号:
ST/R002614/1 - 财政年份:2018
- 资助金额:
$ 3.28万 - 项目类别:
Research Grant
A Systematic Data Driven Characterization of the Atmospheres of Brown Dwarfs: At the Boundary Between Stars and Planets
褐矮星大气的系统数据驱动特征:恒星和行星之间的边界
- 批准号:
1615220 - 财政年份:2016
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
Measuring the Ages of Stars in the Era of Big Data Time-Domain Astronomy
大数据时域天文学时代测量恒星年龄
- 批准号:
1501418 - 财政年份:2015
- 资助金额:
$ 3.28万 - 项目类别:
Fellowship Award
Detection of variable stars by time series analysis of the overlapping areas from large-scale astronomical image data sets
通过大规模天文图像数据集中重叠区域的时间序列分析来检测变星
- 批准号:
15K12068 - 财政年份:2015
- 资助金额:
$ 3.28万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Survey of active solar-type stars with the wide-filed photometric observations and archival data
利用宽视场光度观测和档案数据对活动太阳型恒星进行调查
- 批准号:
26800096 - 财政年份:2014
- 资助金额:
$ 3.28万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Seismology of red giant stars based on most space telescope data
基于大多数太空望远镜数据的红巨星地震学
- 批准号:
382657-2009 - 财政年份:2009
- 资助金额:
$ 3.28万 - 项目类别:
University Undergraduate Student Research Awards