Quantum Error Correction with Quantum States of Light

用光的量子态进行量子纠错

基本信息

  • 批准号:
    RGPIN-2022-04451
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Quantum computers are rapidly emerging as a transformative technology, with the promise of revolutionizing many areas such as quantum chemistry, machine learning or cryptography. However, to date, no one has performed a useful quantum computation that could not have otherwise been done on a classical computer. This is because current quantum computers are composed of a small number of quantum bits (qubits), and these qubits are noisy objects that can only maintain quantum information for a finite amount of time. Ultimately, the true power of quantum will be unleashed through error-corrected, universal quantum computers, but the hardware overhead required for such machines is enormous. One particularly challenging requirement is that quantum computers should be fault-tolerant, in which case the computation is protected from errors in any single part of the system. In my research, I plan to develop a fault-tolerant quantum computing architecture based on quantum states of light. Then, leveraging the knowledge acquired in the context of quantum computing, I will develop novel devices for quantum-enhanced sensing. The traditional approach to quantum computers is to encode the information in physical two-level systems (physical qubits), for example superconducting qubits. In order to correct errors, one uses a quantum error-correction code and encrypts logical qubits in ensembles of physical qubits. In this approach, the requirements for fault-tolerant computations are daunting, with millions of qubits required for a useful implementation of Shor's factorization algorithm. Instead, an alternative approach is to use a bosonic code to encode the information in harmonic oscillator modes such as microwave cavities. This approach is more hardware-efficient because large ensembles of physical qubits are replaced by a single component, and harmonic oscillator modes can be made into longer-lived objects than physical qubits. For these reasons, bosonic codes constitute one of the most promising options to build a fault-tolerant quantum computer. In my research, I will develop methods for their practical implementation, and study how to combine individual bosonic codes to form a full quantum computer. To summarize: building a quantum computer is a formidable challenge, and my research aims at designing the building blocks of its architecture on the highest-quality elements we can engineer, harmonic oscillators. Beyond quantum computing, bosonic codes could also be a powerful resource for quantum-enhanced sensing. I also plan to leverage the advances made on bosonic codes and apply them to other areas such as quantum metrology, which for example would help in the search for dark matter. More broadly, the fact that the bosonic codes can be implemented in various experimental platforms holds great potential for quantum sensing, and my research aims at developing novel quantum-enhanced sensors.
量子计算机正迅速成为一种变革性技术,有望彻底改变量子化学、机器学习或密码学等许多领域。然而,到目前为止,还没有人完成了经典计算机无法完成的有用的量子计算。这是因为目前的量子计算机是由少量量子比特(量子位)组成的,这些量子位是嘈杂的物体,只能在有限的时间内保持量子信息。最终,量子的真正力量将通过纠错的通用量子计算机释放出来,但这种机器所需的硬件开销是巨大的。一个特别具有挑战性的要求是,量子计算机应该是容错的,在这种情况下,计算被保护免受系统任何单个部分的错误。在我的研究中,我计划开发一种基于光量子态的容错量子计算架构。然后,利用在量子计算背景下获得的知识,我将开发用于量子增强传感的新型设备。量子计算机的传统方法是在物理两级系统(物理量子比特)中对信息进行编码,例如超导量子比特。为了纠正错误,人们使用量子纠错码并在物理量子比特的集合中加密逻辑量子比特。在这种方法中,对容错计算的要求是令人生畏的,需要数百万个量子位才能有效地实现肖尔分解算法。相反,另一种方法是使用玻色子编码在谐振子模式(如微波腔)中对信息进行编码。这种方法的硬件效率更高,因为物理量子比特的大集合被单个组件取代,谐波振荡器模式可以制成比物理量子比特更长寿的对象。由于这些原因,玻色子代码是构建容错量子计算机最有希望的选择之一。在我的研究中,我将开发它们的实际实现方法,并研究如何将单个玻色子代码组合成一个完整的量子计算机。总而言之:构建量子计算机是一项艰巨的挑战,我的研究目标是在我们可以设计的最高质量元素谐波振荡器上设计其架构的构建块。除了量子计算,玻色子代码也可以成为量子增强传感的强大资源。我还计划利用玻色子编码的进展,并将其应用于其他领域,例如量子计量学,这将有助于寻找暗物质。更广泛地说,玻色子编码可以在各种实验平台上实现,这一事实为量子传感提供了巨大的潜力,我的研究旨在开发新型量子增强传感器。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Royer, Baptiste其他文献

Loophole-free Bell inequality violation with superconducting circuits.
  • DOI:
    10.1038/s41586-023-05885-0
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Storz, Simon;Schar, Josua;Kulikov, Anatoly;Magnard, Paul;Kurpiers, Philipp;Lutolf, Janis;Walter, Theo;Copetudo, Adrian;Reuer, Kevin;Akin, Abdulkadir;Besse, Jean-Claude;Gabureac, Mihai;Norris, Graham J.;Rosario, Andres;Martin, Ferran;Martinez, Jose;Amaya, Waldimar;Mitchell, Morgan W.;Abellan, Carlos;Bancal, Jean-Daniel;Sangouard, Nicolas;Royer, Baptiste;Blais, Alexandre;Wallraff, Andreas
  • 通讯作者:
    Wallraff, Andreas
Quantum Metamaterial for Broadband Detection of Single Microwave Photons
  • DOI:
    10.1103/physrevapplied.15.034074
  • 发表时间:
    2021-03-25
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Grimsmo, Arne L.;Royer, Baptiste;Blais, Alexandre
  • 通讯作者:
    Blais, Alexandre
Itinerant Microwave Photon Detector
  • DOI:
    10.1103/physrevlett.120.203602
  • 发表时间:
    2018-05-16
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Royer, Baptiste;Grimsmo, Arne L.;Blais, Alexandre
  • 通讯作者:
    Blais, Alexandre

Royer, Baptiste的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Royer, Baptiste', 18)}}的其他基金

Quantum Error Correction with Quantum States of Light
用光的量子态进行量子纠错
  • 批准号:
    DGECR-2022-00399
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Launch Supplement
Quantum Error Correction with Quantum States of Light
用光的量子态进行量子纠错
  • 批准号:
    DGDND-2022-04451
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Métamatériaux quantiques basés sur les circuits supraconducteurs
超导电路的量子基础
  • 批准号:
    501247-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Métamatériaux quantiques basés sur les circuits supraconducteurs
超导电路的量子基础
  • 批准号:
    501247-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Métamatériaux quantiques basés sur les circuits supraconducteurs
超导电路的量子基础
  • 批准号:
    501247-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Optique quantique dans des circuits supraconducteurs
超导体电路中的光学量子
  • 批准号:
    464973-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's

相似国自然基金

基于Laplace Error惩罚函数的变量选择方法及其在全基因组关联分析中的应用
  • 批准号:
    11001280
  • 批准年份:
    2010
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Research on continuous-variable optical quantum error correction
连续可变光量子纠错研究
  • 批准号:
    23KJ0498
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Quantum Error Correction in a dual-species Rydberg array (QuERy)
双物种里德堡阵列中的量子纠错 (QuERy)
  • 批准号:
    EP/X025055/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
Integrating quantum sensors with bespoke quantum error correction
将量子传感器与定制量子纠错集成
  • 批准号:
    EP/W028115/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Fellowship
Quantum Error Correction in Neutral Atom Quantum Computer
中性原子量子计算机中的量子纠错
  • 批准号:
    2889069
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
Development of Robust Quantum Error Correction by Continuous-Time Quantum Feedback Control
通过连续时间量子反馈控制开发鲁棒量子纠错
  • 批准号:
    23H01432
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
QuantoTrace: Error-Correction-as-a-Service for Robust Quantum Computing
QuantoTrace:用于稳健量子计算的纠错即服务
  • 批准号:
    10076022
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant for R&D
High Performance Control and Error Correction Hardware for Quantum Computing
用于量子计算的高性能控制和纠错硬件
  • 批准号:
    10037194
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
Methods towards photonic quantum error detection and correction
光子量子错误检测和校正的方法
  • 批准号:
    MR/W011794/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Fellowship
Operator Structures and Methods in Quantum Error Correction, Quantum Privacy, and Entanglement Theory
量子纠错、量子隐私和纠缠理论中的算子结构和方法
  • 批准号:
    RGPIN-2018-04809
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing the practical implementation of quantum error correction with fault-tolerant syndrome extraction
通过容错综合症提取推进量子纠错的实际实施
  • 批准号:
    10032566
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了