Analytics for Managing Health Care Wait Lists: Predictive and Prescriptive Approaches

管理医疗保健等候名单的分析:预测和规范方法

基本信息

  • 批准号:
    RGPIN-2019-04398
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Excessive wait times for care are a pressing problem in Canada. In 2004, the government invested $5.5 billion dollars in a "Wait Times Reduction Fund." However, several reports make it clear that further significant reductions in wait times are still needed. The goal of this DG is to develop and apply predictive and prescriptive analytics to improve wait list management. As an application of our work, we will work with surgeons and administrators at BC Children's Hospital (BCCH) to improve the wait time experience for pediatric patients awaiting elective surgery. On the predictive front, we have: Aim 1: Development of wait time prediction tools to provide patients with more accurate estimates of their anticipated wait times for surgery. Since frustration with waiting often occurs when there is a mismatch between anticipated and actual wait times, Aim 1 intends to improve individuals' wait time experiences. Furthermore, accurate wait time estimation may help patients make better "wait or leave" queueing decisions, especially when they have outside options for care. We will apply the tools of queueing theory, simulation, and machine learning to develop wait time prediction tools for patients joining a surgical wait list. We have already developed a discrete-event simulation (DES) model of wait list dynamics at BCCH, which we will use for estimating wait times. However, it is computationally expensive to run the model every time a surgeon wants to provide a wait time estimate for a patient. Instead, we will run the DES offline to generate wait time samples of patients joining the wait list from various states, from which we will fit regression and machine learning models. The final predictive model will strike a balance between accuracy, transparency, and ease-of-use as a bedside tool. While there are publications describing wait time prediction models for emergency departments, we are unaware of predictive models for estimating wait times for surgery. On the prescriptive front, we have: Aim 2: Identification of effective and practical strategies for pooling surgical wait lists. Traditionally, surgeons who conduct the initial consultation with a patient also perform the surgery itself. While this may be good from a continuity-of-care point of view, there are some procedures which may be reasonably performed by other surgeons with the same expertise. This raises the interesting prescriptive question of how best to design a system in which some surgeons pool their wait lists. We will work closely with surgeons to first identify potential patient types and surgeries that can be pooled, and then we will use our DES model in a simulation-optimization framework to identify promising system design changes. Our objective will be to reduce surgery wait times while also giving careful consideration to ease of implementation. This aim of the DG will also contribute to the process flexibility literature, by extending it to health care settings.
在加拿大,等待护理的时间过长是一个紧迫的问题。2004年,政府向“减少等待时间基金”投资了55亿美元。然而,几份报告明确表示,仍需进一步大幅缩短等待时间。这个DG的目标是开发和应用预测性和规范性分析来改进等待名单管理。作为我们工作的应用,我们将与卑诗省儿童医院(BCCH)的外科医生和管理人员合作,改善等待择期手术的儿科患者的等待时间体验。在预测方面,我们有:目标1:开发等待时间预测工具,为患者提供更准确的手术预期等待时间估计。由于等待的挫折感通常发生在预期等待时间与实际等待时间不匹配的情况下,目标1打算改善个人的等待时间体验。此外,准确的等待时间估计可能有助于患者做出更好的“等待或离开”排队决定,特别是当他们有外部护理选择的时候。我们将应用排队论、模拟和机器学习的工具,为加入手术等待名单的患者开发等待时间预测工具。我们已经开发了BCCH等待列表动态的离散事件模拟(DES)模型,我们将使用该模型来估计等待时间。然而,每次外科医生想要为患者提供等待时间估计时,运行该模型的计算成本都很高。相反,我们将离线运行DES,以生成来自不同州的患者加入等待名单的等待时间样本,从中我们将拟合回归和机器学习模型。最终的预测模型将在准确性、透明度和作为床边工具的易用性之间取得平衡。虽然有出版物描述了急诊科的等待时间预测模型,但我们还不知道用于估计手术等待时间的预测模型。在处方方面,我们有:目标2:确定有效和实用的策略,以汇集外科等待名单。传统上,与患者进行初步会诊的外科医生也会自己进行手术。虽然从连续性护理的角度来看,这可能是好的,但也有一些程序可以由具有相同专业知识的其他外科医生合理地执行。这提出了一个有趣的处方问题,即如何最好地设计一个系统,让一些外科医生将他们的等待名单汇集在一起。我们将与外科医生密切合作,首先确定可以汇集的潜在患者类型和手术,然后在模拟优化框架中使用我们的DES模型来确定有希望的系统设计变化。我们的目标将是在减少手术等待时间的同时,仔细考虑是否易于实施。DG的这一目标还将通过将其扩展到医疗保健环境来促进流程灵活性文献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shechter, Stephen其他文献

Shechter, Stephen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shechter, Stephen', 18)}}的其他基金

Analytics for Managing Health Care Wait Lists: Predictive and Prescriptive Approaches
管理医疗保健等候名单的分析:预测和规范方法
  • 批准号:
    RGPIN-2019-04398
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Analytics for Managing Health Care Wait Lists: Predictive and Prescriptive Approaches
管理医疗保健等候名单的分析:预测和规范方法
  • 批准号:
    RGPIN-2019-04398
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Long COVID in Bangladesh: Developing Strategies for Identifying and Managing Post-COVID Syndrome in LMIC and Low Resource Health Systems
孟加拉国的长期新冠疫情:制定识别和管理中低收入国家和资源匮乏卫生系统中新冠肺炎后综合症的策略
  • 批准号:
    494270
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Operating Grants
Managing Obesity by Leveraging Health Information Technology to Lower Cancer Risk
利用健康信息技术控制肥胖以降低癌症风险
  • 批准号:
    10355938
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
Managing Obesity by Leveraging Health Information Technology to Lower Cancer Risk
利用健康信息技术控制肥胖以降低癌症风险
  • 批准号:
    10551269
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
(Mis)Managing Microbiomes: Experiences and Challenges with Chronic Vulvovaginal Candidiasis in Primary Health Care
(错误)管理微生物组:初级卫生保健中慢性外阴阴道念珠菌病的经验和挑战
  • 批准号:
    457221
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Studentship Programs
Understanding and Managing the Impact of Mental Health Conditions on the Cascade of Care Among Women Living with HIV
了解和管理心理健康状况对感染艾滋病毒的女性的一系列护理的影响
  • 批准号:
    467085
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Studentship Programs
Analytics for Managing Health Care Wait Lists: Predictive and Prescriptive Approaches
管理医疗保健等候名单的分析:预测和规范方法
  • 批准号:
    RGPIN-2019-04398
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Managing living mulch to improve soil health and encourage natural enemies
管理活体覆盖物以改善土壤健康并鼓励天敌
  • 批准号:
    BB/V509814/1
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Training Grant
Analytics for Managing Health Care Wait Lists: Predictive and Prescriptive Approaches
管理医疗保健等候名单的分析:预测和规范方法
  • 批准号:
    RGPIN-2019-04398
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Managing living mulch (cover crops) to improve soil health (including nutrient cycling) and encourage natural enemies in orchard crops
管理活体覆盖物(覆盖作物)以改善土壤健康(包括养分循环)并鼓励果园作物中的天敌
  • 批准号:
    2614407
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Studentship
Translating Knowledge for Child Welfare Organizations Across the Prairies: Managing the Impacts of COVID-19 on the Mental Health of Children, Families, and Workers
为大草原上的儿童福利组织转化知识:管理 COVID-19 对儿童、家庭和工人心理健康的影响
  • 批准号:
    425049
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了