Improved Class Number Tabulation via Power Series

通过幂级数改进类数列表

基本信息

  • 批准号:
    574704-2022
  • 负责人:
  • 金额:
    $ 0.44万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    University Undergraduate Student Research Awards
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
没有摘要--Aucun Sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KostalVazquez, AnthonyA其他文献

KostalVazquez, AnthonyA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Class Ⅲ型过氧化物酶基因OsPOX8.1调控水稻抗褐飞虱的分子机制研究
  • 批准号:
    32301918
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
拟南芥Class II TCP转录因子调控雌蕊顶端命运决定的分子机制
  • 批准号:
    32300291
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PAR1介导的MHC class I表达探讨血府逐瘀汤逆转肺癌免疫逃逸的作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
无细胞生物合成S-腺苷甲硫氨酸自由基依赖的Class B甲基转移酶的系统构筑及应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
CAMKIV-MHC Class I-ER Stress途径对骨骼肌炎症及再生的调控及机制研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
时空 g-class Ornstein-Uhlenbeck 型过程的统计推断问题研究
  • 批准号:
    11801355
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Class IIa 类乳酸菌细菌素 plantaricin YKX 在亚抑菌浓度下对脂环酸芽孢杆菌 QS 系统的调控机理研究
  • 批准号:
    31801563
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Class I HDACs介导的DNA损伤修复和转录重编程在肝癌发生中的作用研究
  • 批准号:
    81872019
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
Class III PI3K通过负反馈AngII/AT1信号通路调节血管内皮细胞衰老的分子机制研究
  • 批准号:
    81771509
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
  • 批准号:
    DP240100186
  • 财政年份:
    2024
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Projects
Arithmetic Statistics: Asymptotics on number fields and their class groups
算术统计:数域及其类群的渐近
  • 批准号:
    RGPIN-2020-06146
  • 财政年份:
    2022
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Grants Program - Individual
Class number formula over global field of characteristic p and with coefficients.
特征 p 和系数的全局域上的类数公式。
  • 批准号:
    21K03186
  • 财政年份:
    2021
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic Statistics: Asymptotics on number fields and their class groups
算术统计:数域及其类群的渐近
  • 批准号:
    RGPIN-2020-06146
  • 财政年份:
    2021
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Statistics: Asymptotics on number fields and their class groups
算术统计:数域及其类群的渐近
  • 批准号:
    DGECR-2020-00365
  • 财政年份:
    2020
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Launch Supplement
Arithmetic Statistics: Asymptotics on number fields and their class groups
算术统计:数域及其类群的渐近
  • 批准号:
    RGPIN-2020-06146
  • 财政年份:
    2020
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Discovery Grants Program - Individual
Class Groups of Number Fields and Zeros of L-functions
L 函数的数域和零的类组
  • 批准号:
    1902193
  • 财政年份:
    2019
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Standard Grant
Investigating the class number formula
研究类数公式
  • 批准号:
    539804-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 0.44万
  • 项目类别:
    University Undergraduate Student Research Awards
Validation of 3D semi-geostrophic equation as the vanishing Froude/Rossby number limit of the 3D Euler equation, in the class of smooth solutions
在光滑解类中验证 3D 半地转方程作为 3D 欧拉方程的消失 Froude/Rossby 数极限
  • 批准号:
    1802758
  • 财政年份:
    2016
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Studentship
Class number problem in Iwasawa theoretical extensions of algebraic number fields
岩泽代数数域理论扩展中的类数问题
  • 批准号:
    16K17580
  • 财政年份:
    2016
  • 资助金额:
    $ 0.44万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了