Integrative and multiscale analysis of epigenomic sequencing data
表观基因组测序数据的综合和多尺度分析
基本信息
- 批准号:RGPIN-2020-06200
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The `epigenome' consists of a multitude of chemical instructions for the process of building proteins from DNA. These instructions govern how and when genes are turned on and off. Different cell types, developmental stages, and environmental exposures can each have their own set of instructions. Decoding these instructions is vital to understanding the fundamental molecular processes of gene regulation and their variation. While new technologies can now probe the epigenome in more dimensions and at higher resolution than ever before, our ability to interpret these measurements lags far behind our ability to generate them. The bottleneck in extracting meaningful biological information from epigenomic experiments lies in data analysis and interpretation. My research program focuses on developing and applying tailored statistical methodology to characterize epigenetic variation and its effects on gene expression. In particular, a critical gap lies in the difficulty in integrating epigenomic information from different sample and measurement sources. Part of this challenge results from the presence of uncontrolled technical artifacts that can mask biological differences. Another major obstacle stems from the fact that epigenetic changes can take place at many different scales, involving anywhere from a single nucleotide to millions, but existing analytical approaches are hardwired to examine one scale at a time. To address these shortcomings, my research objectives focus on developing new quantitative frameworks for normalization, multiscale inference, and integrative modeling of epigenomic sequencing data. Specifically, we will develop a statistical approach for the computational correction of recently identified sequencing biases in methylation data that can confound the interpretation of biological signals. To infer epigenetic changes at multiple scales of resolution, we will develop a statistical approach that infers the scale from the data. In addition, we will carry out a systematic in silico evaluation of the relationship between epigenetic modification and gene expression that accounts for spatial relationships. The proposed research facilitates the integration of epigenomic information, which will lead to greater understanding of the molecular processes governing gene regulation and their variation with respect to factors such as environment or age. Key advances in analytic procedures will allow for unbiased interpretation that is also agnostic to the scale at which the signal predominates. Systematic exploration of the regulatory potential of inter- and intra-genetic modifications will yield insight into how epigenomic signals interact. Further, the methodology developed will be disseminated through publicly available tools, which will enable other investigators in the community to extract meaningful biological insights from sequencing data.
“表观基因组”由大量的化学指令组成,用于从DNA中构建蛋白质的过程。这些指令控制着基因如何以及何时开启和关闭。不同的细胞类型、发育阶段和环境暴露都有各自的一套指令。解码这些指令对于理解基因调控及其变异的基本分子过程至关重要。虽然新技术现在可以在更多的维度和更高的分辨率上探测表观基因组,但我们解释这些测量结果的能力远远落后于我们生成它们的能力。从表观基因组实验中提取有意义的生物学信息的瓶颈在于数据分析和解释。我的研究项目侧重于开发和应用量身定制的统计方法来表征表观遗传变异及其对基因表达的影响。特别是,一个关键的差距在于难以整合来自不同样本和测量来源的表观基因组信息。这种挑战的部分原因是存在不受控制的技术工件,这些工件可以掩盖生物差异。另一个主要障碍源于这样一个事实,即表观遗传变化可以发生在许多不同的尺度上,涉及从单个核苷酸到数百万个核苷酸的任何地方,但现有的分析方法只能一次检查一个尺度。为了解决这些缺点,我的研究目标集中在开发新的量化框架,用于规范化、多尺度推理和表观基因组测序数据的综合建模。具体来说,我们将开发一种统计方法,用于计算校正最近发现的甲基化数据中可能混淆生物信号解释的测序偏差。为了在多个分辨率尺度上推断表观遗传变化,我们将开发一种从数据中推断尺度的统计方法。此外,我们将对表观遗传修饰与空间关系基因表达之间的关系进行系统的计算机评估。该研究促进了表观基因组信息的整合,这将有助于更好地理解基因调控的分子过程及其与环境或年龄等因素相关的变异。分析程序的关键进展将允许无偏解释,这也是信号占主导地位的尺度的不可知论。系统地探索基因间和基因内修饰的调控潜力将使我们深入了解表观基因组信号如何相互作用。此外,开发的方法将通过公开可用的工具传播,这将使社区中的其他研究人员能够从测序数据中提取有意义的生物学见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Korthauer, Keegan其他文献
A practical guide to methods controlling false discoveries in computational biology
- DOI:
10.1186/s13059-019-1716-1 - 发表时间:
2019-06-04 - 期刊:
- 影响因子:12.3
- 作者:
Korthauer, Keegan;Kimes, Patrick K.;Hicks, Stephanie C. - 通讯作者:
Hicks, Stephanie C.
Reversal of viral and epigenetic HLA class I repression in Merkel cell carcinoma.
- DOI:
10.1172/jci151666 - 发表时间:
2022-07-01 - 期刊:
- 影响因子:15.9
- 作者:
Lee, Patrick C.;Klaeger, Susan;Le, Phuong M.;Korthauer, Keegan;Cheng, Jingwei;Ananthapadmanabhan, Varsha;Frost, Thomas C.;Stevens, Jonathan D.;Wong, Alan Y. L.;Iorgulescu, J. Bryan;Tarren, Anna Y.;Chea, Vipheaviny A.;Carulli, Isabel P.;Lemvigh, Camilla K.;Pedersen, Christina B.;Gartin, Ashley K.;Sarkizova, Siranush;Wright, Kyle T.;Li, Letitia W.;Nomburg, Jason;Li, Shuqiang;Huang, Teddy;Liu, Xiaoxi;Pomerance, Lucas;Doherty, Laura M.;Apffel, Annie M.;Wallace, Luke J.;Rachimi, Suzanna;Felt, Kristen D.;Wolff, Jacquelyn O.;Witten, Elizabeth;Zhang, Wandi;Neuberg, Donna;Lane, William J.;Zhang, Guanglan;Olsen, Lars R.;Thakuria, Manisha;Rodig, Scott J.;Clauser, Karl R.;Starrett, Gabriel J.;Doench, John G.;Buhrlage, Sara J.;Carr, Steven A.;DeCaprio, James A.;Wu, Catherine J.;Keskin, Derin B. - 通讯作者:
Keskin, Derin B.
A compositional model to assess expression changes from single-cell RNA-seq data
用于评估单细胞 RNA-seq 数据表达变化的组成模型
- DOI:
10.1214/20-aoas1423 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ma, Xiuyu;Korthauer, Keegan;Kendziorski, Christina;Newton, Michael A. - 通讯作者:
Newton, Michael A.
Detection and accurate false discovery rate control of differentially methylated regions from whole genome bisulfite sequencing
- DOI:
10.1093/biostatistics/kxy007 - 发表时间:
2019-07-01 - 期刊:
- 影响因子:2.1
- 作者:
Korthauer, Keegan;Chakraborty, Sutirtha;Irizarry, Rafael A. - 通讯作者:
Irizarry, Rafael A.
Korthauer, Keegan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Korthauer, Keegan', 18)}}的其他基金
Integrative and multiscale analysis of epigenomic sequencing data
表观基因组测序数据的综合和多尺度分析
- 批准号:
RGPIN-2020-06200 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Integrative and multiscale analysis of epigenomic sequencing data
表观基因组测序数据的综合和多尺度分析
- 批准号:
RGPIN-2020-06200 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Integrative and multiscale analysis of epigenomic sequencing data
表观基因组测序数据的综合和多尺度分析
- 批准号:
DGECR-2020-00054 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
热力耦合方程组的并行多尺度算法
- 批准号:11301329
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
生物膜式反应器内复杂热物理参数动态场分布的多尺度实时测量方法研究
- 批准号:50876120
- 批准年份:2008
- 资助金额:36.0 万元
- 项目类别:面上项目
天然生物材料的多尺度力学与仿生研究
- 批准号:10732050
- 批准年份:2007
- 资助金额:200.0 万元
- 项目类别:重点项目
ABR颗粒污泥的多尺度结构形态、理化特征与分子生态学解析
- 批准号:50578012
- 批准年份:2005
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
IHBEM: Empirical analysis of a data-driven multiscale metapopulation mobility network modeling infection dynamics and mobility responses in rural States
IHBEM:对数据驱动的多尺度集合人口流动网络进行实证分析,对农村国家的感染动态和流动反应进行建模
- 批准号:
2327862 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Systems Biology of Tumor-Immune-Stromal Interactions in Metastatic Progression
转移进展中肿瘤-免疫-基质相互作用的系统生物学
- 批准号:
10729464 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Improving bone mass and quality in comorbid diabetes and chronic kidney disease
改善糖尿病和慢性肾病共病患者的骨量和骨质量
- 批准号:
10590035 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Development of the Multiscale and Multi-electro-chemo-mechanical Lifecycle Evaluation Method of Impressed Current Cathodic Protection Applied to Reinforced Concrete Structures
钢筋混凝土结构外加电流阴极保护多尺度、多电化学-机械生命周期评价方法的发展
- 批准号:
23K19134 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Elucidation of Stress-Strain Response Dominant Factors in Crystalline Materials by Multiscale Strain Analysis
通过多尺度应变分析阐明晶体材料中应力-应变响应的主导因素
- 批准号:
23K03578 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multiscale modeling of spatiotemporal evolution in Barrett's esophagus
巴雷特食管时空演化的多尺度建模
- 批准号:
10659649 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
High-throughput Phenotyping of iPSC-derived Airway Epithelium by Multiscale Machine Learning Microscopy
通过多尺度机器学习显微镜对 iPSC 衍生的气道上皮进行高通量表型分析
- 批准号:
10659397 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
AIM-AI: an Actionable, Integrated and Multiscale genetic map of Alzheimer's disease via deep learning
AIM-AI:通过深度学习绘制阿尔茨海默病的可操作、集成和多尺度遗传图谱
- 批准号:
10668829 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别: