非负数量曲率填充问题的研究
批准号:
12001292
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
王文龙
依托单位:
学科分类:
几何分析
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
王文龙
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
微信扫码咨询
中文摘要
一组(推广的)Bartnik数据(M,g,h)由一个可定向、零配边的闭黎曼流形(M,g)及其上一个光滑函数h构成。(M,g,h)的一个非负数量曲率填充是指一个数量曲率非负的紧致带边流形,其边界与(M,g)等距同构且关于外法向的平均曲率为h。研究非负数量曲率填充问题,既有助于刻画数量曲率非负的紧致带边流形的边界行为,也有助于理解广义相对论中的拟局部质量。定义一个不变量Λ_+(M,g)为:所有正的、(M,g,h)允许非负数量曲率填充的h中,h在(M,g)上积分的上确界。本项目主要的研究目标是:.(1)当M是拓扑球面时,证明Λ_+(M,g)的有限性及关于g的C^0拓扑的连续性;.(2)借助Λ_+不变量定义推广的Brown-York质量,通过研究Λ_+不变量关于拓扑球面在标准度量处的展开,得出推广的Brown-York质量的大小尺度极限。.其中(1)与Gromov最近提出的两个猜想密切相关。
英文摘要
A triple of (generalized) Bartnik data (M,g,h) consists of an orientable closed null-cobordant Riemannian manifold (M,g) and a given smooth function h on it. A fill-in of nonnegative scalar curvature of the Bartnik data (M,g,h) is a compact Riemannian manifold with nonnegative scalar curvature whose boundary is isometric to (M,g) and has mean curvature h with respect to the outward normal. The study of fill-in of nonnegative scalar curvature helps us to describe the boundary behavior of a compact Riemannian manifold with boundary and nonnegative scalar curvature and understand the quasi-local mass in general relativity. Define Λ_+(M,g) to be the supremum of the integral of h on (M,g) among all positive h that (M,g,h) admits a fill-in of nonnegative scalar curvature. The goals of this program are the following..(1) When M is a topological sphere, prove the finiteness of Λ_+(M,g) and the continuity of Λ_+(M,g) with respect to the C^0 topology of g..(2) Define a generalized Brown-York mass by the Λ_+ invariant and obtain the large scale limit and small scale limit of the generalized Brown-York mass via the study of the expansion of Λ_+ at the standard metric on the sphere..The first goal is closely related to two conjectures raised by Gromov recently.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1515/crelle-2021-0072
发表时间:2020-07
期刊:Journal für die reine und angewandte Mathematik (Crelles Journal)
影响因子:--
作者:Yuguang Shi;Wenlong Wang;Guodong Wei
通讯作者:Guodong Wei
DOI:10.1007/s00526-022-02333-1
发表时间:2022
期刊:Calculus of Variations and Partial Differential Equations
影响因子:2.1
作者:Rongli Huang;Qianzhong Ou;Wenlong Wang
通讯作者:Wenlong Wang
国内基金
海外基金















{{item.name}}会员


