课题基金基金详情
运用深度神经网络模型选择适合血管内治疗的大血管缺血性脑卒中患者:动物到人的迁移学习
结题报告
批准号:
81971696
项目类别:
面上项目
资助金额:
55.0 万元
负责人:
杨利
依托单位:
学科分类:
医学图像数据处理、分析与可视化
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
杨利
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
脑梗死是导致人类残疾的主要疾病之一,急性期可通过静脉溶栓及介入机械取栓两种疗法恢复缺血区供血。但目前对于如何选择脑梗死患者进行血管再通治疗的最佳方法还没达成共识,且尚无研究可准确预测患者的预后。近来,人工智能发展迅速,其分支迁移学习是一种将先前建立的模型迁移到新模型中辅助其训练的方法。脑梗死动物模型的构建可人为控制变量,且动物数据的多样性可增加深度学习网络模型的普适性,但从未有研究将动物影像数据建立的模型迁移学习到人类数据。本研究提出以兔的大血管缺血性脑卒中影像数据为基础,开发一种适用于将动物数据建立的模型迁移学习到人类数据的深度神经网络框架,输入原始CT灌注图像对脑组织供血程度进行准确分割,并预测不同临床决策的预后。然后用独立患者队列验证模型的准确性,进而开发出运用于临床的软件。这将有助于临床医生在短时间内科学选择对脑梗死患者预后最有益的临床决策,具有重要临床价值。
英文摘要
Stroke is one of the leading causes for long-term disability in humans. Intravenous r-tPA and mechanical thrombectomy are two methods for restoring blood flow in ischemic regions of the brain. There is currently no clear consensus on the best method for selecting stroke patients to undergo endovascular therapy. Similarly, no prior research has been able to accurately predict prognosis in these patients. Machine learning, in the form of deep learning (artificial intelligence) techniques using deep neural networks, has led to breakthroughs in other areas of visual data processing, and is being increasingly used in medicine. Transfer learning, a machine learning method where a pre-trained model on a problem is reused on a different problem, allows the training of deep neural networks with comparatively little data. Establishment of an animal model of ischemic stroke allows control of variables and increases diversity of training data that improves the generalizability of the model. However, there has been no previous study which transfers learning from model built from animal imaging to human data. In this project, based on imaging data from a rabbit model of large vessel ischemic stroke, we propose to develop a novel deep neural network architectural design that facilitates transfer learning from animal to human data. Using raw CT perfusion images, the model will accurately segment brain perfusion at each voxel (normal vs. penumbra vs. infarct) and predict prognosis after different treatments. We will validate our models on a separate independent patient cohort. A software with an easy-to-use interface will be applied in the ED to generate a report of treatment response prediction and recommend the optimal course of care. This project has great clinical significance because it allows physicians make the most scientific and beneficial decision for stroke patients within a short amount of time.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.jstrokecerebrovasdis.2022.106753
发表时间:2022-09
期刊:Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
影响因子:--
作者:Shujuan Meng;Thi My Linh Tran;Mingzhe Hu;Panpan Wang;T. Yi;Zhusi Zhong;Luoyun Wang;Braden Vogt;Z. Jiao;Arko Barman;U. Çetintemel;Ken Chang;Dat-Thanh Nguyen;Ferdinand K. Hui;I-Yin Pan;Bo Xiao;Li Yang;Hao Zhou;H. Bai
通讯作者:Shujuan Meng;Thi My Linh Tran;Mingzhe Hu;Panpan Wang;T. Yi;Zhusi Zhong;Luoyun Wang;Braden Vogt;Z. Jiao;Arko Barman;U. Çetintemel;Ken Chang;Dat-Thanh Nguyen;Ferdinand K. Hui;I-Yin Pan;Bo Xiao;Li Yang;Hao Zhou;H. Bai
DOI:10.1111/cns.13687
发表时间:2021-10
期刊:CNS neuroscience & therapeutics
影响因子:5.5
作者:Tang L;Liu S;Xiao Y;Tran TML;Choi JW;Wu J;Halsey K;Huang RY;Boxerman J;Patel SH;Kung D;Liu R;Feldman MD;Danoski DD;Liao WH;Kasner SE;Liu T;Xiao B;Zhang PJ;Reznik M;Bai HX;Yang L
通讯作者:Yang L
DOI:--
发表时间:2022
期刊:Epilepsy Research
影响因子:--
作者:John Sollee;Lei Tang;Aime Bienfait Igiraneza;Bo Xiao;Harrison X. Bai;Li Yang
通讯作者:Li Yang
DOI:10.3390/brainsci13020369
发表时间:2023-02-20
期刊:BRAIN SCIENCES
影响因子:3.3
作者:Zhang, Chen;Dai, Yuwei;Han, Binhong;Peng, Jian;Ma, Jie;Tang, Qi;Yang, Li
通讯作者:Yang, Li
DOI:10.1093/neuonc/noab151
发表时间:2021-06-26
期刊:NEURO-ONCOLOGY
影响因子:15.9
作者:Peng, Jian;Kim, Daniel D.;Bai, Harrison X.
通讯作者:Bai, Harrison X.
运用深度学习法预测胶质瘤相关重要分子标志物的研究
  • 批准号:
    2018JJ3709
  • 项目类别:
    省市级项目
  • 资助金额:
    0.0万元
  • 批准年份:
    2018
  • 负责人:
    杨利
  • 依托单位:
1p/19q染色体杂合性缺失的胶质瘤细胞系-合成致死药物筛选模型的创建
  • 批准号:
    81301988
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    23.0万元
  • 批准年份:
    2013
  • 负责人:
    杨利
  • 依托单位:
国内基金
海外基金