课题基金基金详情
几类随机图的谱性质及其相关问题的研究
结题报告
批准号:
12001421
项目类别:
青年科学基金项目
资助金额:
24.0 万元
负责人:
胡丹
依托单位:
学科分类:
组合数学
结题年份:
2023
批准年份:
2020
项目状态:
已结题
项目参与者:
胡丹
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
近年来随机图谱理论已成为国内外研究热点,引起了众多学者的广泛研究。本项目主要围绕随机图谱的计算及应用展开深入研究,基于几类随机图模型,研究其对应的若干随机矩阵的谱性质。主要包括:1.研究随机混合图的Hermitian Laplacian矩阵和规范化Hermitian Laplacian矩阵的经验谱分布以及Hermitian邻接矩阵特征值的界。2.研究广义随机混合图的Hermitian邻接矩阵谱半径的渐近界和规范化Hermitian Laplacian矩阵特征值的近似问题。3.研究随机定向图的斜邻接矩阵和斜Randić矩阵的谱半径的渐近界。本项目研究内容涉及图谱理论、概率论、随机矩阵论等,是一个多学科相互交叉的综合性研究课题。一方面通过开发新方法和新工具深入探讨随机图的谱性质,从而丰富和发展随机图谱理论;另一方面,通过随机图谱的理论研究,为解决实际问题提供可靠的科学依据和理论指导。
英文摘要
In recent years, spectral random graph theory has been a research hotspot both at home and abroad, and it has attracted considerable studies from many scholars. This project mainly focuses on the calculation and application of the spectra of random graphs. Based on several random graph models, the spectral properties of several corresponding random matrices are studied. This project mainly includes the following research contents. 1. We will study the empirical spectral distributions of the Hermitian Laplacian matrix and the normalized Hermitian Laplacian matrix, and the bounds of eigenvalues of the Hermitian adjacency matrix of random mixed graphs. 2. We will study the asymptotic bound of the spectral radius of the Hermitian adjacency matrix, and the problem of approximating the eigenvalues of the normalized Hermitian Laplacian matrix of generalized random mixed graphs. 3. We will study the asymptotic bounds of the spectral radii of the skew adjacency matrix and the skew Randić matrix of random oriented graphs. This project involves spectral graph theory, probability theory, random matrix theory etc., and it is an interactional, comprehensive and multidisciplinary research project. On one hand, through the development of new methods and new tools to further explore the spectral properties of random graphs, so as to enrich and develop the spectral random graph theory; on the other hand, through the theoretical research of the spectra of random graphs, it provides reliable scientific basis and theoretical guidance for solving practical problems.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.laa.2024.01.003
发表时间:2024-01
期刊:Linear Algebra and its Applications
影响因子:1.1
作者:Dan Hu;H. Broersma;Jiangyou Hou;Shenggui Zhang
通讯作者:Dan Hu;H. Broersma;Jiangyou Hou;Shenggui Zhang
Robin-Robin domain decomposition methods for the dual-porosity-conduit system
双孔隙导管系统的 Robin-Robin 域分解方法
DOI:10.1007/s10444-020-09828-5
发表时间:2021-01
期刊:Advances in Computational Mathematics
影响因子:1.7
作者:Jiangyong Hou;Wenjing Yan;Dan Hu;Zhengkang He
通讯作者:Zhengkang He
DOI:10.1016/j.laa.2022.08.019
发表时间:2022-08
期刊:Linear Algebra and its Applications
影响因子:1.1
作者:Dan Hu;H. Broersma;Jiangyou Hou;Shenggui Zhang
通讯作者:Dan Hu;H. Broersma;Jiangyou Hou;Shenggui Zhang
On the Spectra of General Random Mixed Graphs
关于一般随机混合图的谱
DOI:10.37236/9638
发表时间:2021
期刊:Electron. J. Comb.
影响因子:--
作者:Dan Hu;H. Broersma;Jiangyou Hou;Shenggui Zhang
通讯作者:Shenggui Zhang
国内基金
海外基金