基于Landsat TM/ETM+/OLI长时间序列的森林变化类型、方向和强度监测方法研究
结题报告
批准号:
31971577
项目类别:
面上项目
资助金额:
58.0 万元
负责人:
李明诗
依托单位:
学科分类:
森林信息学与森林经理学
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
李明诗
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
大地域、长时间序列的森林变化类型、方向和强度时空意义明确的信息对于生物多样性丰富度维持、气候调节、碳蓄积和水分供给等科学应用具有基础性数据支撑作用,及时、准确地采集森林变化信息已成为当前自然资源管理者、全球变化研究科学家及政府政策制定者等的重点关注。项目的总体目标是基于长时间序列LandsatTM/ETM+/OLI数据,发展一个综合的、基于遥感的连续变化检测和分类算法实现森林急剧变化、季节性变化和缓慢变化的类型分离和制图。借助傅里叶思想,采用稳健迭代重复加权最小二乘方法拟合像元的反射率时间序列谐波模型,通过比较模型预测值与遥感实际观测值差异并阈值化(因像元而异、数据驱动的阈值)来识别断点(急剧变化),通过分段线性拟合求取斜率来定义森林渐变并累积渐变总量,评估拟合模型的峰值和谷值差异来定义季节性变化特征,为在30米空间、16或8天时间尺度上实现森林变化类型、方向和强度监测提供模型和方法。
英文摘要
Large-scale, long time series and spatially explicit forest change information on change type, direction and magnitude plays an underlying role in supporting diverse scientific applications including maintaining biodiversity richness, regulating climate, sequestering carbon and supplying water etc., thus, timely and accurate aquisition of such information has become the major concern of current natural resources managers, global change investigators and governmental policy makers. The major objective of the study is to develop an integrated and continuous change detection and classification algorithm to separate and map forest abrupt change, seasonal change and gradual change events based on long time series Landsat Landsat TM/ETM+/OLI observations. The Fourier idea is introduced into our methodological development. Specifically, a harmonically related weighted sum model consisting of sins and consines, constant and trend terms is proposed to represent the aggregated contributions of forest abrupt change, seasonal change and gradual change to the spectral reflentance change of a pixel in the long time series, and this model is fitted by using the robust iteratively reweighted least squares method. Through comparing the modeled reflectances and the actual Landsat observations, applying a pixel-specific and data-driven thresholding technique, forest abrupt change events (represented as breaks in the modeled time series reflectances) are identified, simultaneously, the piecewise linear fitting based on the observations between the two identified breaks is used to derive the slope to characterize forest gradual change event and obtain the accumulated graudal magnitude. And assessing the difference between the modeled peak values and valley values is applied to define forest seasonal change characteristics. As a result, an integrated mapping model to capture forest change types, directions and magnitudes in the 30 meters spatial resolution, and 16 days or 8 days period cycle manner is developed to satisfy multi-discinplinary scientific data demands for forest change information.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
Use of vegetation change tracker, spatial analysis, and random forest regression to assess the evolution of plantation stand age in Southeast China
利用植被变化跟踪器、空间分析和随机森林回归评估中国东南部人工林林龄的演变
DOI:10.1007/s13595-020-0924-x
发表时间:2020-03
期刊:Annals of Forest Science
影响因子:3
作者:Diao Jiaojiao;Feng Tuo;Li Mingshi;Zhu Zhiliang;Liu Jinxun;Biging Gregory;Zheng Guang;Shen Wenjuan;Wang Heng;Wang Jingrui;Ji Biyong
通讯作者:Ji Biyong
Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests
估算中国亚热带森林地上生物量的机器学习和地统计学方法
DOI:10.1186/s40663-020-00276-7
发表时间:2020-05
期刊:Forest Ecosystems
影响因子:4.1
作者:Su Huiyi;Shen Wenjuan;Wang Jingrui;Ali Arshad;Li Mingshi
通讯作者:Li Mingshi
DOI:10.3390/rs13040792
发表时间:2021-02
期刊:Remote. Sens.
影响因子:--
作者:J. Qiu;Heng Wang;Wenjuan Shen;Yali Zhang;H. Su;Mingshi Li
通讯作者:J. Qiu;Heng Wang;Wenjuan Shen;Yali Zhang;H. Su;Mingshi Li
DOI:10.1080/15481603.2022.2163574
发表时间:2023-12-31
期刊:GISCIENCE & REMOTE SENSING
影响因子:6.7
作者:Zhang,Yali;Wang,Ni;Li,Mingshi
通讯作者:Li,Mingshi
DOI:10.1007/s11676-021-01325-9
发表时间:2021-04
期刊:Journal of Forestry Research
影响因子:3
作者:Yali Zhang;Sandeep Sharma;M. Bista;Mingshi Li
通讯作者:Yali Zhang;Sandeep Sharma;M. Bista;Mingshi Li
基于干扰和恢复历史的南方人工林碳核算改进方法研究
  • 批准号:
    31670552
  • 项目类别:
    面上项目
  • 资助金额:
    62.0万元
  • 批准年份:
    2016
  • 负责人:
    李明诗
  • 依托单位:
基于模型-遥感整合的人工林应对干扰及气候变化的响应规律研究
  • 批准号:
    31270587
  • 项目类别:
    面上项目
  • 资助金额:
    80.0万元
  • 批准年份:
    2012
  • 负责人:
    李明诗
  • 依托单位:
基于植被变化追踪遥感模型的南方人工林破碎化模式研究
  • 批准号:
    30972297
  • 项目类别:
    面上项目
  • 资助金额:
    30.0万元
  • 批准年份:
    2009
  • 负责人:
    李明诗
  • 依托单位:
国内基金
海外基金