旋转偶极化旋量玻色爱因斯坦凝聚体的基态与动力学的数学理论及其相关数值方法研究
结题报告
批准号:
11971335
项目类别:
面上项目
资助金额:
52.0 万元
负责人:
唐庆粦
依托单位:
学科分类:
微分方程数值解
结题年份:
2023
批准年份:
2019
项目状态:
已结题
项目参与者:
唐庆粦
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
本项目旨在研究旋转偶极化旋量玻色-爱因斯坦凝聚体的基态解与动力学的数学理论及其相关数值方法,并借此发现一些新的物理现象。由于旋转角动量、长程且有奇异性的偶极作用项(DDI)和自旋作用项三项耦合在一起,使对应的模型变得复杂,给理论分析和数值方法的设计都带来新的挑战。如何处理旋转项和DDI是算法设计成功与否的关键所在。本项目将基于Gross-Pitaevskii方程组,拟从以下三方面展开研究:1.利用PDE相关分析工具来研究基态解与动力学的性质。2.设计一类卷积核截断方法(KTM)来正则化DDI的奇性,进而结合卷积定理与快速傅立叶变换来求解DDI。更进一步,结合KTM与黎曼流形上的优化方法,构造一类预处理共轭梯度流--KTM方法来计算CGPE的基态解。3.设计相应的旋转拉格朗日坐标变换技巧来消去CGPE中的旋转项,并结合KTM方法,构造一类两步紧时间分裂谱方法来模拟CGPE的动力学演化。
英文摘要
This project is to investigate the mathematical theory and numerical methods for the ground states and dynamics of rotating dipolar spinor Bose-Einstein condensates. Due to the coupling of the rotating angular momentum, the long-range singular dipole-dipole interaction (DDI) and the spin-spin interaction, the governed model becomes complicated, which brings significant challenge for both mathematical analysis and design of numerical methods. The key points of the numerical methods lie on the proper treatments of the rotational term and DDI. Based on the coupled Gross-Pitaevskii equations (CGPE), we will carry out studies via the following three aspects: (1). Utilizing PDE analyzing tools to study the properties of the ground states and dynamics. (2). Develop a kernel truncation method to regularize the DDI, based on which the DDI can be solved out efficiently via the convolution theory and fast Fourier transform. Then, combine KTM with the optimization method on Riemannian manifolds, we design a preconditioned conjugated gradient--KTM method to compute the ground states. (3). We will develop a rotating Lagrangian coordinate transform technique to eliminate the rotating term. Based on this and the KTM, we propose a two-step compact time splitting spectral method to simulate the dynamics of the rotating dipolar spinor BEC.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
DOI:10.1016/j.cpc.2021.108007
发表时间:2021-08
期刊:Comput. Phys. Commun.
影响因子:--
作者:Jérémie Gaidamour;Q. Tang;X. Antoine
通讯作者:Jérémie Gaidamour;Q. Tang;X. Antoine
DOI:https://doi.org/10.1137/23M1550803
发表时间:2024
期刊:SIAM Journal on Scientific Computing
影响因子:--
作者:Xin Liu;Qinglin Tang;Shaobo Zhang;Yong Zhang
通讯作者:Yong Zhang
DOI:10.1016/j.jcp.2021.110328
发表时间:2021-04-09
期刊:JOURNAL OF COMPUTATIONAL PHYSICS
影响因子:4.1
作者:Antoine, Xavier;Shen, Jie;Tang, Qinglin
通讯作者:Tang, Qinglin
DOI:10.1016/j.cnsns.2020.105406
发表时间:2020-11-01
期刊:COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION
影响因子:3.9
作者:Antoine, Xavier;Geuzaine, Christophe;Tang, Qinglin
通讯作者:Tang, Qinglin
国内基金
海外基金